Using loop transformations for precision tuning in iterative programs

Youssef Fakhreddine and Guillaume Revy

Univ Perpignan Via Domitia, DALI, Perpignan, France
LIRMM, Univ Montpellier, CNRS (UMR 5506), Montpellier, France
Context and achievement

Context

⊕ Various floating-point formats exist = different level of accuracy
 ▶ IEEE 754-2019 defines four formats: binary{16, 32, 64, 128}
 ▶ non IEEE formats: BFloat16, Posit, ...

⊖ Floating-point arithmetic is non-intuitive
 ▶ discrete and finite set of values → 0.1 not exactly representable
 ▶ loss of arithmetic properties → $a + (b + c) \neq (a + b) + c$

■ Over-sizing of the computation means → higher precision by default

■ Precision tuning: technique to improve performance of numerical applications

⚠ Most existing tools do not consider iterative nature of programs ⚠

Achievement : a dynamic auto-tuning tool, targeting iterative routines

■ reduce the precision of certain instructions at the iteration level,
■ to the detriment of an increase of the time of tuning process.
Motivating example (1/2)

- **Objective**: calculate the sum $\sum_{i=1}^{1000} 0.01 = 10$

```c
double s_b64 = 0.;
for (int i=1; i<=1000; i++)
    s_b64 = s_b64 + 0.01;
printf("s_b64 = %.20lf", s_b64);
```

```
double s_b64 = 0.;
for (int i=1; i<=1000; i++)
    s_b64 = s_b64 + 0.01;
printf("s_b64 = %.20lf", s_b64);
```

\(s_{b64} = 9.99999999999983124610\)
Motivating example (1/2)

- **Objective**: calculate the sum $\sum_{i=1}^{1000} 0.01 = 10$

```c
double s_b64 = 0.;
for (int i=1; i<=1000; i++)
    s_b64 = s_b64 + 0.01;
printf("s_b64 = %.20lf", s_b64);
```

```c
float s_b32 = 0.f;
for (int i=1; i<=1000; i++)
    s_b32 = s_b32 + 0.01f;
printf("s_b32 = %.20f", s_b32);
```

$s_b64 = 9.99999999999983124610$

$s_b32 = 10.00013351440429687500$

$|s_b64 - s_b32| / s_b64 \approx 10^{-5}$
Motivating example (1/2)

Objective: calculate the sum \(\sum_{i=1}^{1000} 0.01 = 10 \)

```
double s_b64 = 0.;
for (int i=1; i <=1000; i++)
    s_b64 = s_b64 + 0.01;
printf("s_b64 = %.20lf", s_b64);

float s_b32 = 0.f;
for (int i=1; i <=1000; i++)
    s_b32 = s_b32 + 0.01f;
printf("s_b32 = %.20f", s_b32);
```

\[s_{b64} = 9.9999999999983124610 \]
\[s_{b32} = 10.00013351440429687500 \]

\[\frac{|s_{b64} - s_{b32}|}{s_{b64}} \approx 10^{-5} \]

Only 1 instruction (addition): which format per iteration to have

\[\frac{|s_{b64} - s_{\text{optim}}|}{s_{b64}} < 10^{-6}? \]

Existing approaches → no solution
Motivating example (2/2)

- Target threshold = $10^{-6} \rightarrow 458$ iterations in binary32
 - Our approach $\rightarrow 450$ iterations in binary32
Motivating example (2/2)

Relative error against number of iterations in binary32

- Target threshold = 10^{-6} → 458 iterations in binary32
- Our approach → 450 iterations in binary32

How to isolate these iterations?
Outline of the talk

1. Auto-tuning of iterative routines

2. Experimental results

3. Conclusion and perspectives
Outline of the talk

1. Auto-tuning of iterative routines

2. Experimental results

3. Conclusion and perspectives
Main flow of dynamic tools

- Most dynamic tools use a trial-and-error strategy
 1. explore a set of possible transformations (configurations)
 2. evaluate the impact of each transformation (eg. accuracy)
Main flow of dynamic tools

- Most dynamic tools use a trial-and-error strategy
 1. explore a set of possible transformations (configurations)
 2. evaluate the impact of each transformation (eg. accuracy)

How to adapt this process to the tuning of iterative programs?
Outline of our project

- **Originality of the proposed approach**
 - change combinatorics by targeting instructions in loop bodies
 - use compilation techniques on loop: loop splitting and unrolling

- **Main steps**
 - loop transformation (splitting, unrolling)
 - configuration evaluation → fp2mp
 - building of maximum subset of transformations → delta-debugging
Static loop transformation

Objective: increase the number of possible transformations

- leverage the LLVM capabilities of transforming programs

```c
for (int i=1; i<=1000; i++)
  s_b64 = s_b64 + 0.01;
```

- do not modify the semantics of the program
- allow to detect two different patterns of transformations

```c
for (int i=1; i<500; i++)
  s_b64 = s_b64 + 0.01;

for (int i=501; i<=1000; i++)
  s_b64 = s_b64 + 0.01;
```
Static loop transformation

- **Objective**: increase the number of possible transformations
 - leverage the LLVM capabilities of transforming programs

```c
for (int i=1; i<=1000; i++)
    s_b64 = s_b64 + 0.01;
```

- **unrolling**
- **splitting**

```c
for (int i=1; i<=1000; i++) {
    s_b64 = s_b64 + 0.01;
    s_b64 = s_b64 + 0.01;
}
```

```c
for (int i=1; i<500; i++)
    s_b64 = s_b64 + 0.01;
for (int i=501; i<=1000; i++)
    s_b64 = s_b64 + 0.01;
```

- do not modify the semantics of the program
- allow to detect two different patterns of transformations

⚠️ **Approach antagonistic to existing ones**
- current trend: reduce the combinatorics to speedup the process
- our approach: increase the combinatorics → 😊 increase the tuning process time
 - improve the quality of the tuning
Evaluate the impact of transformations

- **Objective:** check if the constraint is still satisfied
- **Rely on fp2mp:** LLVM instrumentation tool
 - duplicate floating-point instructions into their MPFR equivalent instructions
 - and allow to compute the result using a desired precision

```c
#include <stdio.h>
#include <mpfr.h>

double s_b64 = 0.;

for (int i=1; i <=1000; i++)
    s_b64 = s_b64 + 0.01;
printf("s_b64 = %.20lf", s_b64);

// |s_b64 - s_mpfr|/|s_b64| < 1e-6 ?
check_reverse_rel_error(s_b64, 1e-6);
```

```c
double s_b64 = 0.;
// ...
mpfr_t s_mpfr, C, S;
mpfr_init2(s_mpfr, 53);
mpfr_init2(C, 53);
mpfr_init2(S, 53);
mpfr_set_d(C, 0.01 , MPFR_RNDN );
for (int i=1; i <=1000; i++) {
    s_b64 = s_b64 + 0.01;
    // ...
    mpfr_set(S, s_mpfr , MPFR_RNDN );
    mpfr_add(s_mpfr, S, C, MPFR_RNDN );
}
printf("s_b64 = %.20lf", s_b64);
// |s_b64 - s_mpfr|/|s_b64| < 1e-6 ?
check_reverse_rel_error(s_b64, 1e-6);
mpfr_clears (s_mpfr, C, S, NULL);
```
Evaluate the impact of transformations

- **Objective**: check if the constraint is still satisfied
- **Rely on fp2mp**: LLVM instrumentation tool
 - duplicate floating-point instructions into their MPFR equivalent instructions
 - and allow to compute the result using a desired precision

```c
double s_b64 = 0.;
for (int i=1; i<=1000; i++)
    s_b64 = s_b64 + 0.01;
printf("s_b64 = %.20lf", s_b64);

// |s_b64 - s_mpfr|/<s_b64| < 1e-6 ?
check_reverse_rel_error(s_b64, 1e-6);
```

- **Interest**
 1. Apply transformations = modify MPFR initialisation precision
 2. Provide means to estimate errors due to transformations

```c
double s_b64 = 0.;
// ...
mpfr_t s_mpfr, C, S;
mpfr_init2(s_mpfr, 53);
mpfr_init2(C, 53);
mpfr_init2(S, 53);
mpfr_set_d(C, 0.01, MPFR_RNDN);
for (int i=1; i<=1000; i++) {
    s_b64 = s_b64 + 0.01;
    // ...
    mpfr_set(S, s_mpfr, MPFR_RNDN);
    mpfr_add(s_mpfr, S, C, MPFR_RNDN);
}
printf("s_b64 = %.20lf", s_b64);

// |s_b64 - s_mpfr|/<s_b64| < 1e-6 ?
check_reverse_rel_error(s_b64, s_mpfr, 1e-6);
mpfr_clears(s_mpfr, C, S, NULL);
```
Delta-Debugging algorithm

- **Objective**: isolate most relevant transformations
 - widely used in auto-tuning tools
 - \texttt{ddmax}: find a locally maximal set of changes \rightarrow the constraint remains satisfied

- For each instruction \rightarrow a list of possible precision (e.g. \([b^{32}, b^{16}]\))
 - apply delta-debugging several times
 - find the lowest precision for each instruction
Back to motivating example

Example of our approach:
- split iteration space $[1, 1000]$ into 20 subspaces of 50 iterations

Now 20 instructions instead of 1 → 20 possible transformations
- $2^{20} = 1048576$ possible configurations

Finally which format per iteration to have

$$\left| \frac{s_{\text{b64}} - s_{\text{optim}}}{s_{\text{b64}}} \right| < 10^{-6}?$$

Our tool’s output: 9 instructions out of these 20 → 45% in binary32
Outline of the talk

1. Auto-tuning of iterative routines

2. Experimental results

3. Conclusion and perspectives
Impact of different strategies

<table>
<thead>
<tr>
<th>threshold</th>
<th>delta-debugging</th>
<th>split / factor = 10</th>
<th>split / factor = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b64 / b32</td>
<td>%</td>
<td>h:m:s</td>
</tr>
<tr>
<td>sum</td>
<td>1e-5</td>
<td>1 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1e-6</td>
<td>1 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1e-8</td>
<td>1 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td>riemann</td>
<td>1e-8</td>
<td>3 / 2</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>1e-9</td>
<td>3 / 2</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>1e-11</td>
<td>5 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td>arclength</td>
<td>1e-8</td>
<td>6 / 5</td>
<td>45.5</td>
</tr>
<tr>
<td></td>
<td>1e-9</td>
<td>8 / 3</td>
<td>27.3</td>
</tr>
<tr>
<td></td>
<td>1e-11</td>
<td>11 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td>simpson</td>
<td>1e-7</td>
<td>4 / 6</td>
<td>60.0</td>
</tr>
<tr>
<td></td>
<td>1e-9</td>
<td>6 / 4</td>
<td>40.0</td>
</tr>
<tr>
<td></td>
<td>1e-11</td>
<td>10 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td>nbody</td>
<td>1e-7</td>
<td>9 / 15</td>
<td>62.5</td>
</tr>
<tr>
<td></td>
<td>1e-10</td>
<td>21 / 3</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>1e-11</td>
<td>24 / 0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>1e-12</td>
<td>24 / 0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Auto-tuning results for splitting strategy.
Impact of different strategies

<table>
<thead>
<tr>
<th>threshold</th>
<th>delta-debugging</th>
<th>unroll / factor = 10</th>
<th>unroll / factor = 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>sum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e-5</td>
<td>1 / 0 0.0 0:00:01</td>
<td>6 / 4 40.0 0:00:08</td>
<td>25 / 25 50.0 0:00:40</td>
</tr>
<tr>
<td>1e-6</td>
<td>1 / 0 0.0 0:00:01</td>
<td>10 / 0 0.0 0:00:08</td>
<td>45 / 5 10.0 0:00:54</td>
</tr>
<tr>
<td>1e-8</td>
<td>1 / 0 0.0 0:00:01</td>
<td>10 / 0 0.0 0:00:08</td>
<td>48 / 2 4.0 0:00:54</td>
</tr>
<tr>
<td>1e-9</td>
<td>3 / 2 40.0 0:00:04</td>
<td>19 / 31 62.0 0:00:29</td>
<td>2 / 248 99.2 0:02:00</td>
</tr>
<tr>
<td>1e-10</td>
<td>3 / 2 40.0 0:00:04</td>
<td>25 / 25 50.0 0:00:46</td>
<td>43 / 207 82.8 0:04:39</td>
</tr>
<tr>
<td>1e-11</td>
<td>5 / 0 0.0 0:00:04</td>
<td>44 / 6 12.0 0:01:02</td>
<td>213 / 37 14.8 0:07:36</td>
</tr>
<tr>
<td></td>
<td>riemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e-8</td>
<td>6 / 5 45.5 0:00:10</td>
<td>32 / 78 70.9 0:01:40</td>
<td>67 / 483 87.8 0:12:50</td>
</tr>
<tr>
<td>1e-9</td>
<td>8 / 3 27.3 0:00:10</td>
<td>31 / 79 71.8 0:02:39</td>
<td>80 / 470 85.5 0:22:54</td>
</tr>
<tr>
<td>1e-11</td>
<td>11 / 0 0.0 0:00:09</td>
<td>110 / 0 0.0 0:01:57</td>
<td>509 / 41 7.5 0:27:58</td>
</tr>
<tr>
<td>1e-7</td>
<td>4 / 6 60.0 0:00:06</td>
<td>10 / 90 90.0 0:00:39</td>
<td>23 / 477 95.4 0:03:09</td>
</tr>
<tr>
<td>1e-10</td>
<td>6 / 4 40.0 0:00:09</td>
<td>56 / 44 44.0 0:01:24</td>
<td>179 / 321 64.2 0:18:18</td>
</tr>
<tr>
<td>1e-11</td>
<td>10 / 0 0.0 0:00:09</td>
<td>95 / 5 5.0 0:02:23</td>
<td>413 / 87 17.4 0:39:05</td>
</tr>
<tr>
<td>1e-7</td>
<td>9 / 15 62.5 0:00:19</td>
<td>36 / 204 85.0 0:02:33</td>
<td>4 / 1196 99.7 0:07:55</td>
</tr>
<tr>
<td>1e-10</td>
<td>21 / 3 12.5 0:00:27</td>
<td>206 / 34 14.2 0:09:28</td>
<td>900 / 300 25.0 2:33:01</td>
</tr>
<tr>
<td>1e-11</td>
<td>24 / 0 0.0 0:00:24</td>
<td>228 / 12 5.0 0:08:29</td>
<td>1046 / 154 12.8 3:51:45</td>
</tr>
<tr>
<td>1e-12</td>
<td>24 / 0 0.0 0:00:25</td>
<td>238 / 2 0.8 0:06:16</td>
<td>1176 / 24 2.0 1:35:16</td>
</tr>
</tbody>
</table>

Auto-tuning results for unrolling strategy.
Focus on Riemann integral (1/3)

- **Objective:** compute the following integral for \(f(x) = x^2 \)

\[
\int_{a}^{b} f(x) \, dx \approx \frac{b-a}{n} \cdot \sum_{k=0}^{n-1} f\left(a + k \cdot \frac{b-a}{n}\right)
\]

- \([a, b] = [0, 5]\)
- \(n = 400\)

- For performance purpose → same format for the whole loop body
Focus on Riemann integral (1/3)

- **Objective:** compute the following integral for $f(x) = x^2$

\[
\int_{a}^{b} f(x) \cdot dx \approx \frac{b-a}{n} \cdot \sum_{k=0}^{n-1} f \left(a + k \cdot \frac{b-a}{n} \right)
\]

- $[a, b] = [0, 5]$
- $n = 400$

- For performance purpose → same format for the whole loop body

Which iterations can be done in lower precision such that the result remains at a given threshold of the binary64 result?
Focus on Riemann integral (2/3)

- Number of splittings $= 1 \rightarrow 30$
- Available formats: binary64, binary32

threshold $= 10^{-9}$

threshold $= 10^{-8}$
Focus on Riemann integral (3/3)

- Number of splittings = 1 → 30
- Available formats: binary64, binary32
- Only one precision change

threshold = 10^{-9}

threshold = 10^{-9}, max change = 1
Auto-tuning for unbounded loops (1/2)

- Conjugate Gradient: method to solve the linear system $Ax = b$

1: $r_0 := p_0 := b - Ax_0$, and $k = 0$
2: while $\| r_k \| \geq \varepsilon$ and $k < \text{maxiter}$ do
3: $\alpha_k := \frac{r_k^T r_k}{p_k^T A p_k}$
4: $x_{k+1} := x_k + \alpha_k p_k$
5: $r_{k+1} := r_k - \alpha_k A p_k$
6: $\beta_k := \frac{r_{k+1}^T r_{k+1}}{r_k^T r_k}$
7: $p_{k+1} := r_{k+1} + \beta_k p_k$
8: $k = k + 1$
9: end while

- In exact arithmetic, it converges in n iterations
- But in floating-point arithmetic, the number of iterations is linked to the precision of the computations
- Example: 494_bus matrix (Suite Sparse Matrix Collection)
 - $\varepsilon = 10^{-6}$
Auto-tuning for unbounded loops (1/2)

- Conjugate Gradient: method to solve the linear system $Ax = b$

![Graph showing residual convergence for binary64 and binary32 precisions.]

- In exact arithmetic, it converges in n iterations.
- But in floating-point arithmetic, the number of iterations is linked to the precision of the computations.
- Example: 494_bus matrix (Suite Sparse Matrix Collection)
 - $\epsilon = 10^{-6}$
 - binary64 = 1315 iterations
 - binary32 = 2494 iterations
Auto-tuning for unbounded loops (1/2)

- Conjugate Gradient: method to solve the linear system $Ax = b$

In exact arithmetic, it converges in n iterations

But in floating-point arithmetic, the number of iterations is linked to the precision of the computations

Example: 494_bus matrix (Suite Sparse Matrix Collection)
- $\epsilon = 10^{-6}$
- binary64 = 1315 iterations
- binary32 = 2494 iterations
Auto-tuning for unbounded loops (1/2)

- Conjugate Gradient: method to solve the linear system $Ax = b$

In exact arithmetic, it converges in n iterations

But in floating-point arithmetic, the number of iterations is linked to the precision of the computations

Example: 494_bus matrix (Suite Sparse Matrix Collection)
- $\epsilon = 10^{-6}$
- $\text{binary64} = 1315$ iterations
- $\text{binary32} = 2494$ iterations
Auto-tuning for unbounded loops (1/2)

- Conjugate Gradient: method to solve the linear system $Ax = b$

In exact arithmetic, it converges in n iterations

But in floating-point arithmetic, the number of iterations is linked to the precision of the computations

Example: 494_bus matrix (Suite Sparse Matrix Collection)

- $\epsilon = 10^{-6}$
- binary64 = 1315 iterations
- binary32 = 2494 iterations

Among these 1315 iterations, which ones can be transformed into binary32, at the risk of increasing the total number of iterations?
Auto-tuning for unbounded loops (2/2)

- Number of splittings = 2 → 20
- Available formats: binary64, binary32

max iteration = 1500

max iteration = 1800
Outline of the talk

1. Auto-tuning of iterative routines

2. Experimental results

3. Conclusion and perspectives
Conclusion and perspectives

Contribution

- Dynamic tool to tune the precision of certain instructions in iterative routines
 - target instructions of loop bodies
 - based on loop transformation + fp2mp + delta-debugging

Future works

- Evaluate the speedup delivered by our tool
- Investigate other loop transformations
- Study how this approach scales → loop size, nested loops