Extracting low-precision floating-point adders from embedded hard FP DSP Blocks on FPGAs

Bogdan Pasca, Martin Langhammer

Intel Corporation

ARITH 2023
4-6 September, 2023
Portland, USA

Contemporary FPGAs embed DSP Blocks with new FP functionality

Context

Contemporary FPGAs embed DSP Blocks with new FP functionality

How to use this functionality for low-precision FP adders?

Background

IEEE-754 formats single (32-bit) and half (16-bit) precision

Exception Encoding

Encoded Value	Exponent	Fraction
Zero (flush mode)	0	Any
Zero (subnormals)	0	0
Subnormal	0	$\neq 0$
Regular	$00 . .01 \rightarrow 11 . .10$	Any
Infinity	$11 . .11$	0
NaN	$11 . .11$	$\neq 0$

Background

Agilex DSP Block in low-precision FP mode

$D=(y H \cdot z H+y L \cdot z L)+x$

SP DSP Block

Agilex, Stratix 10, Arria 10

$D=(y \cdot z)+x$

HP FP Add Architecture - Agilex

- Goal:

$$
S=(a+b)
$$

with a, b, and S are HP values.

HP FP Add Architecture - Agilex

- Goal:

$$
S=(a+b)
$$

with a, b, and S are HP values.

- How?

Agilex DSP Block in fp16multadd_sum flushed mode.
$D=(y H \cdot z H+y L \cdot z L)+x$
$y Y, y L, z H$ and $z L$ are all HP values, x and D are in SP.

HP FP Add Architecture - Agilex

- Goal:

$$
S=(a+b)
$$

with a, b, and S are HP values.

- How?

Agilex DSP Block in fp16multadd_sum flushed mode.

$$
D=(y H \cdot z H+y L \cdot z L)+x
$$

$y Y, y L, z H$ and $z L$ are all HP values, x and D are in SP.

- Use the mapping:

$$
\begin{aligned}
& y H=a, z H=+1(H P) \\
& y L=b, z L=+1(H P) \\
& x=-0(\mathrm{SP}) .
\end{aligned}
$$

HP FP Add Architecture - Agilex

- Goal:

$$
S=(a+b)
$$

with a, b, and S are HP values.

- How?

Agilex DSP Block in fp16multadd_sum flushed mode.
$D=(y H \cdot z H+y L \cdot z L)+x$
$y Y, y L, z H$ and $z L$ are all HP values, x and D are in SP.

- Use the mapping:

$$
\begin{aligned}
& y H=a, z H=+1(H P) \\
& y L=b, z L=+1(H P) \\
& x=-0(\mathrm{SP}) .
\end{aligned}
$$

- Subtlety that $x=-0$ allows maintaining the correct sign for 0 .

HP FP Add Architecture - Agilex

- D is now a SP value containing a 10 -bit populated fraction.
- fraction extracted directly: $D[22: 13]$.

HP FP Add Architecture - Agilex

- D is now a SP value containing a 10-bit populated fraction.
- fraction extracted directly: D [22:13].
- biased 8-bit exponent $\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}[30: 23] \xrightarrow{\text { convert }}$ a 5-bit HP exponent.

HP FP Add Architecture - Agilex

- D is now a SP value containing a 10-bit populated fraction.
- fraction extracted directly: D [22:13].
- biased 8-bit exponent $\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}[30: 23] \xrightarrow{\text { convert }}$ a 5-bit HP exponent.
- How?
bias difference between SP and HP is 112:

$$
\begin{aligned}
e_{S}^{\mathrm{b}} & =\left(e_{\mathrm{D}}^{\mathrm{b}}-127\right)+15 \\
& =e_{D}^{\mathrm{b}}-112 .
\end{aligned}
$$

HP FP Add Architecture - Agilex

- D is now a SP value containing a 10-bit populated fraction.
- fraction extracted directly: D [22:13].
- biased 8-bit exponent $\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}[30: 23] \xrightarrow{\text { convert }}$ a 5-bit HP exponent.
- How? bias difference between SP and HP is 112:

$$
\begin{aligned}
e_{S}^{b} & =\left(e_{D}^{\mathrm{b}}-127\right)+15 \\
& =e_{D}^{\mathrm{b}}-112 .
\end{aligned}
$$

What about special cases?

HP FP Add Architecture - Agilex

Check the effect of exponent subtraction on exception case encodings:
For Infinity and $\mathbf{N a N} e_{D}^{b}=255$:

$$
\begin{aligned}
\mathrm{e}_{\mathrm{S}}^{\mathrm{b}} & =255-112=143 \\
& =10001111(\text { in binary encoding })
\end{aligned}
$$

HP FP Add Architecture - Agilex

Check the effect of exponent subtraction on exception case encodings:
For Infinity and $\mathbf{N a N} e_{D}^{b}=255$:

$$
\begin{aligned}
\mathrm{e}_{\mathrm{S}}^{\mathrm{b}} & =255-112=143 \\
& =10001111 \text { (in binary encoding) } .
\end{aligned}
$$

For Zero (FTZ) $e_{D}^{b}=0$:

$$
\begin{aligned}
\exp _{\mathrm{S}}^{\mathrm{b}} & =0-112=-112 \\
& =10010000(\text { in binary encoding }) .
\end{aligned}
$$

HP FP Add Architecture - Agilex

Check the effect of exponent subtraction on exception case encodings:
For Infinity and $\mathbf{N a N} e_{D}^{b}=255$:

$$
\begin{aligned}
\mathrm{e}_{\mathrm{S}}^{\mathrm{b}} & =255-112=143 \\
& =10001111 \text { (in binary encoding) } .
\end{aligned}
$$

For Zero (FTZ) $e_{D}^{b}=0$:

$$
\begin{aligned}
\exp _{\mathrm{S}}^{\mathrm{b}} & =0-112=-112 \\
& =10010000(\text { in binary encoding }) .
\end{aligned}
$$

Lower 4-bits match desired encoding, bit 5 needs inverting.

HP FP Add Architecture - Agilex

$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$	$\mathrm{e}_{\mathrm{D}}^{\mathrm{u}}$	Binary	Class	$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}-112$	Binary	Goal
255	-	11111111	\mid Inf/NaN	143	10001111	11111
142	15	10001110	Regular	30	00011110	11110
141	14	10001101	Regular	29	00011101	11101
\ldots						
128	1	10000000	Regular	16	00010000	10000
127	0	01111111	Regular	15	00001111	01111
126	-1	01111110	Regular	14	00001110	01110
\ldots						
114	-13	01110010	Regular	2	00000010	00010
113	-14	01110001	Regular	1	00000001	00001
0	-	00000000	Zero	-112	10010000	00000

HP FP Add Architecture - Agilex

$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$	$\mathrm{e}_{\mathrm{D}}^{\mathrm{u}}$	Binary	Class	$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$-112	Binary	Goal
255	-	11111111	Inf/NaN	143	10001111	11111
142	15	10001110	Regular	30	00011110	11110
141	14	10001101	Regular	29	00011101	11101
\ldots						
128	1	10000000	Regular	16	00010000	10000
127	0	01111111	Regular	15	00001111	01111
126	-1	01111110	Regular	14	00001110	01110
\ldots						
114	-13	01110010	Regular	2	00000010	00010
113	-14	01110001	Regular	1	00000001	00001
0	-	00000000	Zero	-112	10010000	00000

HP FP Add Architecture - Agilex

$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$	$\mathrm{e}_{\mathrm{D}}^{\mathrm{u}}$	Binary	Class	$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$-112	Binary	Goal
255	-	11111111	Inf/NaN	143	10001111	11111
142	15	10001110	Regular	30	00011110	11110
141	14	10001101	Regular	29	00011101	11101
\ldots						
128	1	10000000	Regular	16	00010000	10000
127	0	01111111	Regular	15	00001111	01111
126	-1	01111110	Regular	14	00001110	01110
\ldots						
114	-13	01110010	Regular	2	00000010	00010
113	-14	01110001	Regular	1	00000001	00001
0	-	00000000	Zero	-112	10010000	00000

HP FP Add Architecture - Agilex

Correctly rounded HP implementation based on the Agilex DSP Block

Alternative HP FP Add Architecture - Agilex

$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$	$\mathrm{e}_{\mathrm{D}}^{\mathrm{u}}$	Binary	Class	$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}-112$	Binary	Goal
255	-	11111111	\|nf/NaN	143	10001111	11111
142	15	10001110	Regular	30	00011110	11110
141	14	10001101	Regular	29	00011101	11101
\ldots						
128	1	10000000	Regular	16	00010000	10000
127	0	01111111	Regular	15	00001111	01111
126	-1	01111110	Regular	14	00001110	01110
\ldots						
114	-13	01110010	Regular	2	00000010	00010
113	-14	01110001	Regular	1	00000001	00001
0	-	00000000	Zero	-112	10010000	00000

Alternative HP FP Add Architecture - Agilex

$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}$	$\mathrm{e}_{\mathrm{D}}^{\mathrm{u}}$	Binary	Class	$\mathrm{e}_{\mathrm{D}}^{\mathrm{b}}-112$	Binary	Goal
255	-	11111111	\mid nf/NaN	143	10001111	11111
142	15	10001110	Regular	30	00011110	11110
141	14	10001101	Regular	29	00011101	11101
\ldots						
128	1	10000000	Regular	16	00010000	10000
127	0	01111111	Regular	15	00001111	01111
126	-1	01111110	Regular	14	00001110	01110
\ldots						
114	-13	01110010	Regular	2	00000010	00010
113	-14	01110001	Regular	1	00000001	00001
0	-	00000000	Zero	-112	10010000	00000

Alternative HP FP Add Architecture - Agilex

Correctly rounded HP implementation based on the Agilex DSP Block

HP FP Add Architecture - SP DSP Block Mapping

- Use SP DSP Block present in Arria 10, Stratix 10 or Agilex
- First step: HP $\xrightarrow{\text { convert }} \mathrm{SP}$
- fraction: right padding with 13 zeros
- exponent: 5-bit $\rightarrow 8$-bit can be done via table lookup

HP FP Add Architecture - SP DSP Block Mapping

- Use SP DSP Block present in Arria 10, Stratix 10 or Agilex
- First step: HP $\xrightarrow{\text { convert }} \mathrm{SP}$
- fraction: right padding with 13 zeros
- exponent: 5-bit $\rightarrow 8$-bit can be done via table lookup
- Use custom conversion, $x_{\mathrm{HP}} \neq x_{\mathrm{SP}}$
- Benefit from exception handling of SP FP Adder

HP FP Add Using SP DSP Blocks - Custom mapping

$$
\begin{aligned}
\operatorname{LUT} 1[0] & =0 ; \\
\operatorname{LUT} 1[i+15] & =i+255-16 ; i \in\{-14,16\}
\end{aligned}
$$

- preserve mapping for 0
- regular values map $x_{\mathrm{SP}}=2^{112} x_{\mathrm{HP}}$
- NaN and Inf exponent encoding is preserved

HP FP Add Using SP DSP Blocks - Custom mapping

$$
\begin{aligned}
\operatorname{LUT} 1[0] & =0 ; \\
\operatorname{LUT} 1[i+15] & =i+255-16 ; i \in\{-14,16\}
\end{aligned}
$$

- preserve mapping for 0
- regular values map $x_{\mathrm{SP}}=2^{112} x_{\mathrm{HP}}$
- NaN and Inf exponent encoding is preserved

Reliably recover output Inf and NaN conditions

HP FP Add Using SP DSP Blocks - Correct Rounding

- correct rounding for RNE on 8-bit exponents and 10-bit fractions
- generically the fraction can be anywhere up to 11 bit
- simply round the 23-bit SP fraction to the 10-bit HP fraction

HP FP Add Using SP DSP Blocks - Correct Rounding

- correct rounding for RNE on 8-bit exponents and 10-bit fractions
- generically the fraction can be anywhere up to 11 bit
- simply round the 23-bit SP fraction to the 10-bit HP fraction

Why does this work? What about double-rounding?

- If no SP rounding occurs \rightarrow easy to prove
- SP rounding has occurred when exponent difference ≥ 14
- HP fraction is only 10 bits wide
- Rounded result far from HP midpoint.

HP FP Add Using SP DSP Blocks - Exponent Recovery

- perform the 'reverse' mapping to the HP format.
- subtract $224=255-31$ from the computed 8 -bit exponent
- handle special cases separately

HP FP Add Using SP DSP Blocks - Exponent Recovery

- perform the 'reverse' mapping to the HP format.
- subtract $224=255-31$ from the computed 8 -bit exponent
- handle special cases separately
- another solution is tabulation-based
- tabulation would require 8-bit table inputs \rightarrow inefficient
- minimum 8-bit exponent 224-10=214 (smallest subnormal).
- observe binary exponent pattern

| Exponent Value | Binary Encoding |
| ---: | :--- | :--- |
| 255 | 1111 1111 |
| \ldots | $111 \times$ xxxx |
| 224 | 11100000 |
| 223 | $1101 \quad 1111$ |
| \ldots | 1101 xxxx |
| 215 | 1101 0111 |
| 214 | 1101 0110 (smallest denormal, half) |
| 0 | 0000 0000 |

HP FP Add Using SP DSP Blocks - Exponent Recovery

- perform the 'reverse' mapping to the HP format.
- subtract $224=255-31$ from the computed 8 -bit exponent
- handle special cases separately
- another solution is tabulation-based
- tabulation would require 8-bit table inputs \rightarrow inefficient
- minimum 8-bit exponent 224-10=214 (smallest subnormal).
- observe binary exponent pattern

Exponent Value	Binary Encoding
255	$1111 \mathbf{1 1 1 1}$
\ldots	$111 \mathbf{x x x x}$
224	$1110 \mathbf{0 0 0 0}$
223	$1101 \mathbf{1 1 1 1}$
\ldots	$1101 \mathbf{x x x x}$
215	$1101 \mathbf{0 1 1 1}$
214	$1101 \mathbf{0 1 1 0}$ (smallest denormal, half)
0	$0000 \mathbf{0 0 0 0}$

Reverse exponent mapping can be performed with only 6 bits

HP FP Add Architecture - SP DSP Block Mapping

Correctly rounded HP implementation using the SP Hard DSP Block

HP FP Add Using SP DSP Blocks - Faithful rounding

- faithful rounding can be obtained by means of truncation.
- fraction is directly truncated to 10 bits.

Results

- logic implementation \rightarrow Quartus 22.4 fp _functions Megacore.
- generated for a target frequency of 500 MHz .
b synthesis on the fastest speedgrades.

Arch	Target	Latency	ALMs	DSPs	Ratio
Proposed-A1	Agilex	5	5	1	147
Proposed-A2	Agilex	5	0	1	152
Logic	$500 \mathrm{MHz},-1$	11	152	0	-
Proposed-B	Statix10	6	26	1	174
Logic	$500 \mathrm{MHz},-1$	16	200	0	-

System Level Impact

- 8K-point FP FFT design from DSP Builder Advanced
- push-button resource tradeoff using new adder architectures
- target is an Agilex FPGA
- resource utilization: 64 ALMs reduction, 32 DSPs increase
- ratio: 185 ALMs / DSP

Architecture	ALMs	M20K	DSPs
Old	8116	62	12
Proposed	2183	46	44

System Level Impact - Chip-Planner View

Proposed Architectures

Conclusion

- FPGA DSP Blocks can support HP FP adder architectures.
- Bounding exponent values can help reduce resources.
- Bit-pattern representations exploits can also improve resources.
- System-level improvements may exceed local savings.
- Reduced routing improves system performance.
- Alternative architecture always useful.

