
A parallel compensated Horner scheme
for SIMD architecture

Christoph Lauter

Computer Science Department, University of Texas at El Paso

Joint work with S. Graillat, Y. Ibrahimy, and C. Jeangoudoux

ARITH 2023, Portland, OR

Ch. Lauter (UTEP) SIMD Compensated Horner 1 / 24

Getting Things Wrong Right Fast

The pre-ExaScale Summit Supercomputer can
execute

200795000000000000 operations per second
CC BY 2.0 C. Jones

Almost none of these operations are exactly correct
Floating-point Operations are subject to roundoff error

Can we still compute meaningful, rigorous results?
→ Quantum field theory
→ Supernova simulation
→ Drugs research, Protein folding

Ch. Lauter (UTEP) SIMD Compensated Horner 2 / 24

Getting Things Wrong Right Fast

The pre-ExaScale Summit Supercomputer can
execute

200795000000000000 operations per second
CC BY 2.0 C. Jones

Almost none of these operations are exactly correct
Floating-point Operations are subject to roundoff error

Can we still compute meaningful, rigorous results?
→ Quantum field theory
→ Supernova simulation
→ Drugs research, Protein folding

Ch. Lauter (UTEP) SIMD Compensated Horner 2 / 24

Getting Things Wrong Right Fast

The pre-ExaScale Summit Supercomputer can
execute

200795000000000000 operations per second
CC BY 2.0 C. Jones

Almost none of these operations are exactly correct
Floating-point Operations are subject to roundoff error

Can we still compute meaningful, rigorous results?
→ Quantum field theory
→ Supernova simulation
→ Drugs research, Protein folding

Ch. Lauter (UTEP) SIMD Compensated Horner 2 / 24

Polynomials As Proxies for Functions

Addition and Multiplication really fast on modern HW
Division behind in performance

General Transcendental Special Functions replaced by
Polynomials

Avoidance of domain splitting requires high degrees

In IEEE754 FP arithmetic, the degree should stay well below
the maximum exponent
⇒ Otherwise, constant underflow and overflow
⇒ Assume degree around 1024 for IEEE754 binary64

Ch. Lauter (UTEP) SIMD Compensated Horner 3 / 24

Need for Accuracy In Polynomial Evaluation

Horner evaluation:
p(x) = c0 + x q(x)

Cancellation can happen in the addition step
Cancellation can even happen repeatedly in the Horner steps
Faithful rounding: doubled precision needed
Binary128 for Binary64 ?

The difficulty of evaluating a polynomial is captured by the
condition number:

cond(p, x) =

∑n
i=0 |ai||x|i

|
∑n

i=0 aix
i|

=
p̃(|x|)
|p(x)|

Ch. Lauter (UTEP) SIMD Compensated Horner 4 / 24

Need for Speed

IEEE754 binary128 precision up to 100 times slower than IEEE
binary64

Error free transformations are properties and algorithms to
compute the generated elementary rounding errors,

a, b entries ∈ F, a ◦ b = fl(a ◦ b) + e, with e ∈ F

Key tools for accurate computation
fixed length expansions libraries: double-double (Briggs,
Bailey, Hida, Li, Lauter), quad-double (Bailey, Hida, Li)
arbitrary length expansions libraries: Priest, Shewchuk,
Joldes-Muller-Popescu
compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi)

Ch. Lauter (UTEP) SIMD Compensated Horner 5 / 24

Parallelizing the Unparallelizable Horner Scheme

Horner Scheme is intrinsically serial

p(x) = c0 + x (c1 + x (c2 + x (. . .) . . .))

Parallelization needs to break the serial nature

p(x) = p0(x) + xk p1(x) + x2k p2 + · · ·+ xnk pn(x)

= p0(x) + xk
(
p1(x) + xk (. . .) . . .

)
p(x) = p̃0(x

n) + x p̃1(x
n) + x2 p̃2(x

n) + . . .

= p̃0(x
n) + x (p̃1(x

n) + x (. . .) . . .)

Only the very first form allows for FP error compensation

p(x) = p0(x) + xk p1(x) + x2k p2(x) + · · ·+ xnk pn(x)

Ch. Lauter (UTEP) SIMD Compensated Horner 6 / 24

Parallelizing the Unparallelizable Horner Scheme

Horner Scheme is intrinsically serial

p(x) = c0 + x (c1 + x (c2 + x (. . .) . . .))

Parallelization needs to break the serial nature

p(x) = p0(x) + xk p1(x) + x2k p2 + · · ·+ xnk pn(x)

= p0(x) + xk
(
p1(x) + xk (. . .) . . .

)
p(x) = p̃0(x

n) + x p̃1(x
n) + x2 p̃2(x

n) + . . .

= p̃0(x
n) + x (p̃1(x

n) + x (. . .) . . .)

Only the very first form allows for FP error compensation

p(x) = p0(x) + xk p1(x) + x2k p2(x) + · · ·+ xnk pn(x)

Ch. Lauter (UTEP) SIMD Compensated Horner 6 / 24

EFT for addition

x = a⊕ b ⇒ a+ b = x+ y with y ∈ F,

Algorithm of Dekker (1971) and Knuth (1974)

Algorithm (EFT of the sum of 2 floating-point numbers)
function [x, y] = TwoSum(a, b)
x = a⊕ b
z = x	 a
y = (a	 (x	 z))⊕ (b	 z)

Ch. Lauter (UTEP) SIMD Compensated Horner 7 / 24

EFT for multiplication

x = a⊗ b ⇒ a× b = x+ y with y ∈ F,

Given a, b, c ∈ F,
FMA(a, b, c) is the nearest floating-point number a× b+ c ∈ F

Algorithm (EFT of the product of 2 floating-point
numbers)
function [x, y] = TwoProd(a, b)
x = a⊗ b
y = FMA(a, b,−x)

The FMA is available for example on PowerPC, Itanium, Cell, Xeon
Phi, AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer)
processors.

Ch. Lauter (UTEP) SIMD Compensated Horner 8 / 24

Horner scheme
Algorithm
function res = Horner(p, x) % p(x) =

∑n
i=0 aix

i

sn = an
for i = n− 1 : −1 : 0
pi = si+1 ⊗ x
si = pi ⊕ ai

end
res = s0

Condition number for the evaluation of p(x):

cond(p, x) =

∑n
i=0 |ai||x|i

|
∑n

i=0 aix
i|

=
p̃(|x|)
|p(x)|

Relative error bound:
|p(x)− Horner(p, x)|

|p(x)|
≤ γ2n︸︷︷︸

≈2nu

cond(p, x)

Ch. Lauter (UTEP) SIMD Compensated Horner 9 / 24

Horner scheme
Algorithm
function res = Horner(p, x) % p(x) =

∑n
i=0 aix

i

sn = an
for i = n− 1 : −1 : 0
pi = si+1 ⊗ x % rounding error πi
si = pi ⊕ ai % rounding error σi

end
res = s0

Condition number for the evaluation of p(x):

cond(p, x) =

∑n
i=0 |ai||x|i

|
∑n

i=0 aix
i|

=
p̃(|x|)
|p(x)|

Relative error bound:
|p(x)− Horner(p, x)|

|p(x)|
≤ γ2n︸︷︷︸

≈2nu

cond(p, x)

Ch. Lauter (UTEP) SIMD Compensated Horner 9 / 24

EFT for Horner scheme

Algorithm (Graillat, Langlois, Louvet, 2008)
function [h, pπ, pσ] = EFTHorner(p, x)
sn = an
for i = n− 1 : −1 : 0

[pi, πi] = TwoProd(si+1, x)
[si, σi] = TwoSum(pi, ai)

end
h = s0

pπ(x) =
n−1∑
i=0

πix
i, pσ(x) =

n−1∑
i=0

σix
i

p(x) = h+ (pπ + pσ)(x) with h = Horner(p, x)

Ch. Lauter (UTEP) SIMD Compensated Horner 10 / 24

Compensated Horner scheme: Accuracy

Algorithm (Graillat, Langlois, Louvet, 2008)
function res = CompHorner(p, x)

[h, pπ, pσ] = EFTHorner(p, x)
c = Horner(pπ ⊕ pσ, x)
res = [h, c]

Theorem (Graillat, Langlois, Louvet, 2008)
Let p be a polynomial of degree n with floating point coefficients,
and x be a floating point value. Then if no underflow occurs, and
res = [h, c] = CompHorner(p, x),

|h⊕ c− p(x)|
|p(x)|

≤ u + γ22n︸︷︷︸
≈4n2u2

cond(p, x).

Ch. Lauter (UTEP) SIMD Compensated Horner 11 / 24

Compensated Algorithms And Double-Double
A double-double number a is the pair (ah, al) of IEEE-754
floating-point numbers with a = ah + al and |al| ≤ u|ah|.

Algorithm (Multiplication of double-double by a double)
function [rh, rl] = prod_dd_d(a, bh, bl)

[t1, t2] = TwoProd(a, bh)
t3 = (a⊗ bl)⊕ t2
[rh, rl] = TwoProd(t1, t3)

Algorithm (Multiplication of two double-doubles)
function [rh, rl] = prod_dd_dd(ah, al, bh, bl)

[t1, t2] = TwoProd(ah, bh)
t3 = ((ah ⊗ bl)⊕ (al ⊗ bh))⊕ t2
[rh, rl] = TwoProd(t1, t3)

Ch. Lauter (UTEP) SIMD Compensated Horner 12 / 24

Accuracy of Double-Double Multiplication

Theorem (Lauter, 2005, Joldes, Muller, Popescu, 2016)
Let be ah + al and bh + bl the double-double arguments of Algorithm
prod_dd_dd. Then the returned values rh and rl satisfy

rh + rl = ((ah + al) · (bh + bl))(1 + ε)

where ε is bounded as follows : |ε| ≤ 7u2. Furthermore, we have
|rl| ≤ u|rh|.

Ch. Lauter (UTEP) SIMD Compensated Horner 13 / 24

Computing Powers

Algorithm (Power evaluation with a compensated
scheme, Graillat, 2009)
function res = CompLogPower(x, n) % n = (ntnt−1 · · ·n1n0)2

[h, l] = [1, 0]
for i = t : −1 : 0

[h, l] = prod_dd_dd(h, l, h, l)
if ni = 1

[h, l] = prod_dd_d(x, h, l)
end

end
res = [h, l]

Complexity : O(log n)

Ch. Lauter (UTEP) SIMD Compensated Horner 14 / 24

Accuracy of Powering

Theorem (Graillat, 2009)
The two values h and l returned by Algorithm CompLogPower satisfy

h+ l = xn(1 + ε)

with
(1− 7u2)n−1 ≤ 1 + ε ≤ (1 + 7u2)n−1.

For example, in double precision where u = 2−53, if
n < 249 ≈ 5 · 1014, then we get a faithfully rounded result.

Ch. Lauter (UTEP) SIMD Compensated Horner 15 / 24

Summing Things Up

Algorithm (Compensated Summation, Ogita, Rump,
Oishi, 2005)
function res = CompSum(p)
π1 = p1 ; σ1 = 0;
for i = 2 : n

[πi, qi] = TwoSum(πi−1, pi)
σi = σi−1 ⊕ qi

res = πn ⊕ σn

Proposition (Ogita, Rump, Oishi, 2005)
Suppose Algorithm CompSum is applied to floating-point number
pi ∈ F, 1 ≤ i ≤ n. Let s :=

∑
pi, S :=

∑
|pi| and nu < 1. Then,

one has
|res− s| ≤ u|s|+ γ2n−1S.

Ch. Lauter (UTEP) SIMD Compensated Horner 16 / 24

A Parallel Horner Scheme

Let us assume p(x) =
∑n

i=0 aix
i with n+ 1 = K ×M

p(x) =
K−1∑
l=0

xlMpl(x) with pl(x) =
M−1∑
k=0

ak+lMx
k.

Algorithm
function res = PHorner(p, x)
K = (n+ 1)/M
% begin parallel on K processors (id = 0, . . . , K − 1)
y = xid·M

q(id) = y ⊗ Horner(pid, x)
% end parallel
res = Sum(q)

Ch. Lauter (UTEP) SIMD Compensated Horner 17 / 24

A parallel compensated Horner scheme
Let us assume p(x) =

∑n
i=0 aix

i with n+ 1 = K ×M

p(x) =
K−1∑
l=0

xlMpl(x) with pl(x) =
M−1∑
k=0

ak+lMx
k.

Algorithm
function res = PCompHorner(p, x)
K = (n+ 1)/M
% begin parallel on K processors (id = 0, . . . , K − 1)
[e, f] = CompLogPower(x, id ·M)
[r, c] = CompHorner(pid, x)
[q(2 · id), q(2 · id+ 1)] = prod_dd_dd(r, c, e, f)
% end parallel
res = CompSum(q)

Ch. Lauter (UTEP) SIMD Compensated Horner 18 / 24

Accuracy of PCompHorner

Theorem
Let p be a polynomial of degree n with floating point coefficients,
and x be a floating point value. Then if no underflow occurs, and
res = PCompHorner(p, x),

|res− p(x)|
|p(x)|

≤ u

+ [(8 + 4(
n+ 1−K

K
)2 + n+ 4n2)u2 +O(u3)]

cond(p, x).

Ch. Lauter (UTEP) SIMD Compensated Horner 19 / 24

Numerical experiments: Accuracy
Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz,

compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

-80

-60

-40

-20

 0

 20

 40

 60

 0 20 40 60 80 100 120

re
la

ti
v
e
 e

rr
o
r

(l
o
g
2
 s

c
a
le

)

condition number (log2 scale)

Classical Horner (sequential)
Classical Horner (parallel)

Classical Horner (binary128, sequential)
Classical Horner (binary128, parallel)

Compensated Horner (sequential)
Compensated Horner (parallel)

Lower is better.

Ch. Lauter (UTEP) SIMD Compensated Horner 20 / 24

Numerical experiments: Performance
Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz,

compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 100 200 300 400 500 600 700 800 900 1000 1100

e
v
a
lu

a
ti
o
n
 t
im

e
 (

n
s
)

degree

Classical Horner (sequential)
Classical Horner (parallel)

Classical Horner (binary128, sequential)
Classical Horner (binary128, parallel)

Compensated Horner (sequential)
Compensated Horner (parallel)

Lower is better.

Ch. Lauter (UTEP) SIMD Compensated Horner 21 / 24

Numerical experiments: Speedup vs. Lanes
Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz,

compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20 25 30 35

S
p
e
e
d
u
p
 (

e
v
a
lu

a
ti
o
n
 t
im

e
 s

e
ri
a
l
/
e
v
a
lu

a
ti
o
n
 t
im

e
 p

a
ra

lle
l)

of (physical or virtual) SIMD lanes

Degree 127
Degree 383
Degree 639
Degree 895

Degree 1023

Higher is better.

Ch. Lauter (UTEP) SIMD Compensated Horner 22 / 24

Numerical experiments: Speedup vs. Degree
Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz,

compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 100 200 300 400 500 600 700 800 900 1000 1100

S
p
e
e
d
u
p
 (

e
v
a
lu

a
ti
o
n
 t
im

e
 s

e
ri
a
l
/
e
v
a
lu

a
ti
o
n
 t
im

e
 p

a
ra

lle
l)

Degree

Speedup with 16 lanes

Higher is better.

Ch. Lauter (UTEP) SIMD Compensated Horner 23 / 24

Conclusion and future work

Conclusion
We have presented a fast parallel compensated Horner scheme
Scalability is acheived up to a certain point
Accuracy is good, almost as good as using binary128 (100x)
Polynomials stay of relatively low degree for IEEE754 FP
Arithmetic

Future work
Avoid use of powering algorithm, requires evaluation of
derivatives
Extend to polynomials with coefficients that are compensated
Work on polynomial interpolation as another building brick

Ch. Lauter (UTEP) SIMD Compensated Horner 24 / 24

IEEE 754 Study Group
Call to Action

Come and join us to define the next version of binary floating-point
standard that helps to make consistent calculation across platform

Background
• IEEE 754 originally was sponsored by Microprocessor standard committee and

standardized in 1985

• Two revisions (2008 and 2018) has helped expand the scope and consolidate the
decimal standard (IEEE 854) to unify binary floating-point format.

• Next Revision (2029) work will start with a study group soon in Q4 2023 – Q1
2024. A formal workgroup will kick off after project approval.

• It is your opportunity to join others to help define the standard, shape how
computer will do math in future. Your participation is not only the best way to
learn about the standard and process but also great contribution to the computer
society and effort.

• Please contact: Leonard Tsai (leonard.tsai@gmail.com) for further detail around
November 2023 time frame.

mailto:leonard.tsai@gmail.com

	Introduction

