A parallel compensated Horner scheme for SIMD architecture

Christoph Lauter

Computer Science Department, University of Texas at El Paso

Joint work with S. Graillat, Y. Ibrahimy, and C. Jeangoudoux

ARITH 2023, Portland, OR

Getting Things Wrong Right <u>Fast</u>

• The pre-ExaScale Summit Supercomputer can execute

20079500000000000000000 operations

CC BY 2.0 C. Jones

Getting Things $\frac{\text{Wrong}}{\text{Right}}$ Right <u>Fast</u>

• The pre-ExaScale Summit Supercomputer can execute

20079500000000000 operations per second

CC BY 2.0 C. Jones

• Almost none of these operations are exactly correct Floating-point Operations are subject to roundoff error

Getting Things $\frac{\text{Wrong}}{\text{Right}}$ Right <u>Fast</u>

• The pre-ExaScale Summit Supercomputer can execute

20079500000000000 operations per second

 $\rm CC$ BY 2.0 C. Jones

- Almost none of these operations are exactly correct Floating-point Operations are subject to roundoff error
- Can we still compute meaningful, rigorous results?
 - $\rightarrow~$ Quantum field theory
 - $\rightarrow~{\rm Supernova}$ simulation
 - $\rightarrow\,$ Drugs research, Protein folding

Polynomials As Proxies for Functions

- Addition and Multiplication really fast on modern HW
- Division behind in performance
- General Transcendental Special Functions replaced by Polynomials
- Avoidance of domain splitting requires high degrees
- In IEEE754 FP arithmetic, the degree should stay well below the maximum exponent
 - $\Rightarrow~$ Otherwise, constant underflow and overflow
 - $\Rightarrow\,$ Assume degree around 1024 for IEEE754 binary 64

Need for Accuracy In Polynomial Evaluation

Horner evaluation:

$$p(x) = c_0 + x q(x)$$

- Cancellation can happen in the addition step
- Cancellation can even happen repeatedly in the Horner steps
- Faithful rounding: doubled precision needed
- Binary128 for Binary64 ?

The difficulty of evaluating a polynomial is captured by the condition number:

$$\operatorname{cond}(p, x) = \frac{\sum_{i=0}^{n} |a_i| |x|^i}{|\sum_{i=0}^{n} a_i x^i|} = \frac{\widetilde{p}(|x|)}{|p(x)|}$$

IEEE754 binary
128 precision up to 100 times slower than IEEE binary
64 $\,$

Error free transformations are properties and algorithms to compute the generated elementary rounding errors,

 $a, b \text{ entries } \in \mathbb{F}, \quad a \circ b = \mathrm{fl}(a \circ b) + e, \text{ with } e \in \mathbb{F}$

Key tools for accurate computation

- fixed length expansions libraries: double-double (Briggs, Bailey, Hida, Li, Lauter), quad-double (Bailey, Hida, Li)
- arbitrary length expansions libraries: Priest, Shewchuk, Joldes-Muller-Popescu
- compensated algorithms (Kahan, Priest, Ogita-Rump-Oishi)

Parallelizing the Unparallelizable Horner Scheme

• Horner Scheme is intrinsically serial

$$p(x) = c_0 + x \ (c_1 + x \ (c_2 + x \ (\dots) \dots))$$

• Parallelization needs to break the serial nature

$$p(x) = p_0(x) + x^k p_1(x) + x^{2k} p_2 + \dots + x^{nk} p_n(x)$$

= $p_0(x) + x^k (p_1(x) + x^k (\dots) \dots)$

$$p(x) = \tilde{p}_0(x^n) + x \, \tilde{p}_1(x^n) + x^2 \, \tilde{p}_2(x^n) + \dots \\ = \tilde{p}_0(x^n) + x \, (\tilde{p}_1(x^n) + x \, (\dots) \dots)$$

Parallelizing the Unparallelizable Horner Scheme

• Horner Scheme is intrinsically serial

$$p(x) = c_0 + x \ (c_1 + x \ (c_2 + x \ (\dots) \dots))$$

• Parallelization needs to break the serial nature

$$p(x) = p_0(x) + x^k p_1(x) + x^{2k} p_2 + \dots + x^{nk} p_n(x)$$

= $p_0(x) + x^k (p_1(x) + x^k (\dots) \dots)$

$$p(x) = \tilde{p}_0(x^n) + x \,\tilde{p}_1(x^n) + x^2 \,\tilde{p}_2(x^n) + \dots = \tilde{p}_0(x^n) + x \,(\tilde{p}_1(x^n) + x \,(\dots) \dots)$$

• Only the very first form allows for FP error compensation

$$p(x) = p_0(x) + x^k p_1(x) + x^{2k} p_2(x) + \dots + x^{nk} p_n(x)$$

$$x = a \oplus b \Rightarrow a + b = x + y \text{ with } y \in \mathbb{F},$$

Algorithm of Dekker (1971) and Knuth (1974)

$$x = a \otimes b \Rightarrow a \times b = x + y \text{ with } y \in \mathbb{F},$$

Given $a, b, c \in \mathbb{F}$,

• FMA(a, b, c) is the nearest floating-point number $a \times b + c \in \mathbb{F}$

Algorithm (EFT of the product of 2 floating-point numbers)

$$\begin{array}{l} \text{function } [x,y] = \texttt{TwoProd}(a,b) \\ x = a \otimes b \\ y = \texttt{FMA}(a,b,-x) \end{array}$$

The FMA is available for example on PowerPC, Itanium, Cell, Xeon Phi, AMD and Nvidia GPU, Intel (Haswell), AMD (Bulldozer) processors.

Ch. Lauter (UTEP)

Horner scheme

Algorithm

```
function res = Horner(p, x)

s_n = a_n

for i = n - 1 : -1 : 0

p_i = s_{i+1} \otimes x

s_i = p_i \oplus a_i

end

res = s_0
```

Condition number for the evaluation of p(x):

$$\operatorname{cond}(p, x) = \frac{\sum_{i=0}^{n} |a_i| |x|^i}{|\sum_{i=0}^{n} a_i x^i|} = \frac{\widetilde{p}(|x|)}{|p(x)|}$$

Relative error bound:
$$\frac{|p(x) - \operatorname{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2n}}_{\approx 2n\mathbf{u}} \operatorname{cond}(p, x)$$

 $\% p(x) = \sum_{i=0}^{n} a_i x^i$

Horner scheme

Algorithm

function $res = Horner(p, x)$	$\% p(x) = \sum_{i=0}^{n} a_i x^i$
$s_n = a_n$	
for $i = n - 1 : -1 : 0$	
$p_i = s_{i+1} \otimes x$	% rounding error π_i
$s_i = p_i \oplus a_i$	% rounding error σ_i
end	
$\mathtt{res} = s_0$	

Condition number for the evaluation of p(x):

$$\operatorname{cond}(p, x) = \frac{\sum_{i=0}^{n} |a_i| |x|^i}{|\sum_{i=0}^{n} a_i x^i|} = \frac{\widetilde{p}(|x|)}{|p(x)|}$$

Relative error bound:
$$\frac{|p(x) - \operatorname{Horner}(p, x)|}{|p(x)|} \leq \underbrace{\gamma_{2n}}_{\approx 2n\mathbf{u}} \operatorname{cond}(p, x)$$

Algorithm (Graillat, Langlois, Louvet, 2008)

function $[h, p_{\pi}, p_{\sigma}] = \text{EFTHorner}(p, x)$

$$\begin{split} s_n &= a_n \\ \text{for } i &= n-1: -1: 0 \\ & [p_i, \pi_i] = \texttt{TwoProd}(s_{i+1}, x) \\ & [s_i, \sigma_i] = \texttt{TwoSum}(p_i, a_i) \end{split}$$

$$h = s_0$$

$$p_{\pi}(x) = \sum_{i=0}^{n-1} \pi_i x^i, \qquad p_{\sigma}(x) = \sum_{i=0}^{n-1} \sigma_i x^i$$

$$p(x) = h + (p_{\pi} + p_{\sigma})(x)$$

with
$$h = \text{Horner}(p, x)$$

Compensated Horner scheme: Accuracy

Algorithm (Graillat, Langlois, Louvet, 2008)

function res = CompHorner(p, x) $[h, p_{\pi}, p_{\sigma}] = \text{EFTHorner}(p, x)$ $c = \text{Horner}(p_{\pi} \oplus p_{\sigma}, x)$ res = [h, c]

Theorem (Graillat, Langlois, Louvet, 2008)

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs, and res = [h, c] = CompHorner(p, x),

$$\frac{|h \oplus c - p(x)|}{|p(x)|} \le \mathbf{u} + \underbrace{\gamma_{2n}^2}_{\approx 4n^2 \mathbf{u}^2} \operatorname{cond}(p, x).$$

Compensated Algorithms And Double-Double

A double-double number a is the pair (a_h, a_l) of IEEE-754 floating-point numbers with $a = a_h + a_l$ and $|a_l| \leq \mathbf{u}|a_h|$.

Algorithm (Multiplication of double-double by a double)

$$\begin{array}{l} \text{function } [r_h, r_l] = \texttt{prod_dd_d}(a, b_h, b_l) \\ [t_1, t_2] = \texttt{TwoProd}(a, b_h) \\ t_3 = (a \otimes b_l) \oplus t_2 \\ [r_h, r_l] = \texttt{TwoProd}(t_1, t_3) \end{array}$$

Algorithm (Multiplication of two double-doubles)

$$\begin{array}{l} \text{function } [r_h, r_l] = \texttt{prod_dd_dd}(a_h, a_l, b_h, b_l) \\ [t_1, t_2] = \texttt{TwoProd}(a_h, b_h) \\ t_3 = ((a_h \otimes b_l) \oplus (a_l \otimes b_h)) \oplus t_2 \\ [r_h, r_l] = \texttt{TwoProd}(t_1, t_3) \end{array}$$

Accuracy of Double-Double Multiplication

Theorem (Lauter, 2005, Joldes, Muller, Popescu, 2016)

Let be $a_h + a_l$ and $b_h + b_l$ the double-double arguments of Algorithm prod_dd_dd. Then the returned values r_h and r_l satisfy

$$r_h + r_l = ((a_h + a_l) \cdot (b_h + b_l))(1 + \varepsilon)$$

where ε is bounded as follows : $|\varepsilon| \leq 7\mathbf{u}^2$. Furthermore, we have $|r_l| \leq \mathbf{u}|r_h|$.

Algorithm (Power evaluation with a compensated scheme, Graillat, 2009)

 $\begin{array}{ll} \mbox{function } \mathbf{res} = \mbox{CompLogPower}(x,n) & \% \ n = (n_t n_{t-1} \cdots n_1 n_0)_2 \\ [h,l] = [1,0] & & \\ \mbox{for } i = t: -1:0 & & \\ [h,l] = \mbox{prod}_dd_dd(h,l,h,l) & & \\ \mbox{if } n_i = 1 & & \\ [h,l] = \mbox{prod}_dd_dd(x,h,l) & & \\ \mbox{end} & & \\ \mbox{end} & & \\ \mbox{res} = [h,l] & & \end{array}$

Complexity : $\mathcal{O}(\log n)$

Theorem (Graillat, 2009)

The two values h and l returned by Algorithm CompLogPower satisfy

$$h+l = x^n(1+\varepsilon)$$

with

$$(1 - 7\mathbf{u}^2)^{n-1} \le 1 + \varepsilon \le (1 + 7\mathbf{u}^2)^{n-1}$$

For example, in double precision where $\mathbf{u} = 2^{-53}$, if $n < 2^{49} \approx 5 \cdot 10^{14}$, then we get a faithfully rounded result.

Summing Things Up

Algorithm (Compensated Summation, Ogita, Rump, Oishi, 2005)

function res = CompSum(p) $\pi_1 = p_1 ; \sigma_1 = 0;$ for i = 2 : n $[\pi_i, q_i] = TwoSum(\pi_{i-1}, p_i)$ $\sigma_i = \sigma_{i-1} \oplus q_i$ res = $\pi_n \oplus \sigma_n$

Proposition (Ogita, Rump, Oishi, 2005)

Suppose Algorithm CompSum is applied to floating-point number $p_i \in \mathbb{F}, 1 \leq i \leq n$. Let $s := \sum p_i, S := \sum |p_i|$ and $n\mathbf{u} < 1$. Then, one has

$$|\operatorname{res} - s| \le \mathbf{u}|s| + \gamma_{n-1}^2 S.$$

Ch. Lauter (UTEP)

A Parallel Horner Scheme

Let us assume $p(x) = \sum_{i=0}^{n} a_i x^i$ with $n+1 = K \times M$

$$p(x) = \sum_{l=0}^{K-1} x^{lM} p_l(x)$$
 with $p_l(x) = \sum_{k=0}^{M-1} a_{k+lM} x^k$.

Algorithm

function res = PHorner(p, x) K = (n + 1)/M% begin parallel on K processors (id = 0, ..., K - 1) $y = x^{id \cdot M}$ $q(id) = y \otimes \text{Horner}(p_{id}, x)$ % end parallel res = Sum(q)

A parallel compensated Horner scheme

Let us assume $p(x) = \sum_{i=0}^{n} a_i x^i$ with $n + 1 = K \times M$

$$p(x) = \sum_{l=0}^{K-1} x^{lM} p_l(x)$$
 with $p_l(x) = \sum_{k=0}^{M-1} a_{k+lM} x^k$.

Algorithm

 $\begin{array}{l} \text{function } \textbf{res} = \texttt{PCompHorner}(p, x) \\ K = (n+1)/M \\ \% \text{ begin parallel on } K \text{ processors } (id = 0, \ldots, K-1) \\ [e, f] = \texttt{CompLogPower}(x, id \cdot M) \\ [r, c] = \texttt{CompHorner}(p_{id}, x) \\ [q(2 \cdot id), q(2 \cdot id + 1)] = \texttt{prod_dd_dd}(r, c, e, f) \\ \% \text{ end parallel} \\ \texttt{res} = \texttt{CompSum}(q) \end{array}$

Ch. Lauter (UTEP)

Theorem

Let p be a polynomial of degree n with floating point coefficients, and x be a floating point value. Then if no underflow occurs, and res = PCompHorner(p, x),

$$\frac{|\operatorname{res} - p(x)|}{|p(x)|} \leq \mathbf{u} + [(8 + 4(\frac{n+1-K}{K})^2 + n + 4n^2)\mathbf{u}^2 + \mathcal{O}(\mathbf{u}^3)]$$

cond(p, x).

Numerical experiments: Accuracy

Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz, compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

Lower is better.

Numerical experiments: Performance

Linux Debian with 11th Gen Intel Core i
5-1145 G7 processor (4 cores, AVX2 @256
bits regs) @ 2.60
GHz, $\ensuremath{\mathsf{N}}$

compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

Lower is better.

Numerical experiments: Speedup vs. Lanes

Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz, compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

Numerical experiments: Speedup vs. Degree

Linux Debian with 11th Gen Intel Core i5-1145G7 processor (4 cores, AVX2 @256bits regs) @ 2.60GHz, compiling with clang version 11.0.1-2, options -Wall -O3 -march=native -ftree-vectorize

Conclusion and future work

Conclusion

- We have presented a fast parallel compensated Horner scheme
- Scalability is acheived up to a certain point
- Accuracy is good, almost as good as using binary128 (100x)
- Polynomials stay of relatively low degree for IEEE754 FP Arithmetic

Future work

- Avoid use of powering algorithm, requires evaluation of derivatives
- Extend to polynomials with coefficients that are compensated
- Work on polynomial interpolation as another building brick

IEEE 754 Study Group Call to Action

Come and join us to define the next version of binary floating-point standard that helps to make consistent calculation across platform

Background

- IEEE 754 originally was sponsored by Microprocessor standard committee and standardized in 1985
- Two revisions (2008 and 2018) has helped expand the scope and consolidate the decimal standard (IEEE 854) to unify binary floating-point format.
- Next Revision (2029) work will start with a study group soon in Q4 2023 Q1 2024. A formal workgroup will kick off after project approval.
- It is your opportunity to join others to help define the standard, shape how computer will do math in future. Your participation is not only the best way to learn about the standard and process but also great contribution to the computer society and effort.
- Please contact: Leonard Tsai (<u>leonard.tsai@gmail.com</u>) for further detail around November 2023 time frame.