
Vectorizing Nonlinear Functions
with the RISC-V Vector ISA
September 5, 2023 ● Portland, OR
Eric Bavier, Nick Knight, Hugues de Lassus and Eric Love

Introduction and Contributions
AI/ML/HPC are data- and compute-intensive

2

Data parallelism in numerical methods Contributions
Nonlinear mathematical functions (exp, log, erf...) often

invoked many times on independent data.

◆ Scientific simulation

◆ Data analytics

◆ Machine learning

Vector Math Library: numerical methods selected for

efficient mapping to vector hardware

◆ Navigate tradeoffs differently: e.g., may avoid

control-flow divergence at cost of more arithmetic.

◆ Ported SLEEF, an open-source vector math
library, to the RISC-V Vector ISA (RVV).

◆ Described key RVV features to optimize code
for nonlinear functions on SiFive X280:

◇ Dynamic vector length
◇ Register grouping
◇ Vector-scalar instructions
◇ Broadcasting with zero-strided loads
◇ Mixed-width arithmetic instructions

◆ Demonstrated FP32 performance benefits of
optimized code against SLEEF and Newlib at
<1 ulp maximum error.

In this talk

3

◆ Short introduction to RISC-V and its Vector Extension

◆ Overview of SiFive’s X280 processor

◆ Case-study I: polynomial evaluation

◆ Case-study II: Cody-Waite range reduction

◆ Accuracy and Performance Evaluation

◆ Perspectives

4

RISC-V Instruction Set Architecture
A modular, extensible, open standard ISA

Programming model

◆ Started c. 2010, the fifth generation of

reduced instruction set computing (RISC)

research projects at UC-Berkeley.

◆ RISC-V International, a Swiss nonprofit,

owns and maintains the specs.

◆ No restrictions on use of the ISA for

development of hardware or software.

◆ RISC-V Vector extension (RVV) ratified in

November 2021.

32 integer
registers
x0-x31

32 floating
point registers

f0-f31

32 vector
registers
v0-v31

◆ Scalable vector register length (VLEN): 128b to 64kib.

◆ Vector registers can be dynamically regrouped into

longer logical registers (LMUL = length multiplier).

◆ Dynamic vector length (vl) simplifies loop stripmining.

SiFive’s X280 Processor
Dual-Issue In-Order Scalar Pipeline with Loosely-Coupled Vector Unit

5

◆ Main focus of our tuning

◆ RV64GCV, Zfh, Zvfh, and

more

◆ Vector & scalar pipelines

share common memory

system

◆ Vector execution

happens after scalar

commit

◆ Three vector pipelines:

◇ Load, store, ALU

◇ Operate

independently

VRF

LD
Seq

Arith
Seq

ST
Seq Vector U

nit

Scalar Pipeline A

W
B

Scalar Unit

Scalar Pipeline B

W
B

L1D$

L2

VC
Q

VL
A

Q

VL
D

Q

VS
A

Q

Caches

Case Study I: Polynomial Evaluation
Splatting Coefficient Operands

6

◆ Polynomials at core of nonlinear functions:

◆ Many ways to evaluate:

◇ Estrin’s Scheme increases parallelism

◇ Horner’s Scheme minimizes # operations

P(x) = cnxn + cn-1x
n-1+...+c0

Pn-1 = FMA(x, Pn, cn)
Pn-2 = FMA(x, Pn-1, cn-1)
…

◆ Inductively computes P0 as

◆ Form chain of dependent fused mul-adds:
Pn = cn ; Pi = ci + xPi+1 ; P0= P(x)

Each 1 instruction

vfmv.v.f v12, f0 # v12[i] = c0
vfmadd.vv v8, v4, v12 # P(x)*x + c0

Both occupy 1 vector ALU on X280 (½ throughput)

Option 1: Scalar→Vector Move

vlse32 v12, (t0), zero
vfmadd.vv v8, v4, v12 # P(x)*x + c0

Option 3: Splat from Mem. w/ 0-Stride Load:

Load and FMA use sep. pipes in parallel

Option 2: Hoist Moves out of Loop:
vfmv.v.f v12, f0 # v12[i] = c0
vfmv.v.f v16, f1 # v16[i] = c1
…
stripmine_loop:

vfmadd.vv v8, v4, v12 # P(x)*x + c0
 vfmadd.vv v8, v4, v16 # P(x)*x + c1
…
Too much register pressure for high degree

Vector Values Scalar Value

◆ Problem: no RVV FMA with scalar addend

◆ Consider three possible solutions…

Case Study I: Polynomial Evaluation
Choosing a Vector Length Multiplier (LMUL)

7

◆ Now splat+FMA operate in parallel:

◆ But: each FMA depends on prior’s result

◇ can’t enter pipeline until prior’s 1st beat exits

◇ ⇒ 6 stall cycles / term @ LMUL=1

◆ How to fix:

◇ Unroll stripmine loop, interleave iterations... or

◇ Increase LMUL to 4 ⇒ 8 beats / instruction

vlse32 v12, (t0), zero
vfmadd.vv v8, v4, v12 # P(x)*x + c0
vlse32 v16, (t1), zero
vfmadd.vv v8, v4, v16 # P(x)*x + c1
…

Vector ALU Datapath

. . .

S0

S1

S2

S7

S3-S6

X280 “DLEN”=256 bits

0 1 2 3Beat 0

Beat 1 12 13 14 15

4 6 75

9 10 118 1 FMA @
LMUL=1
[VLEN=512b]

6 cycles
dead time
before next
FMA

(LMUL * VLEN / DLEN) >= Pipeline Depth Hides Latency

vlse32 v12, (t0), zero
vfmadd.vv v8, v4, v12 # P(x)*x + c0

vfmv.v.f v12, f0 # v12[i] = c0
vfmadd.vv v8, v4, v12 # P(x)*x + c0

Case Study I: Polynomial Evaluation
Alternative Design Choices

8

◆ Might make different choices on other platforms

◆ If more than 1 ALU, would want to:

◇ Unroll & interleave stripmine iterations

◇ Replace Horner with Estrin or “Higher-Order

Horner” (accuracy consequences)

◆ If cheap scalar→vector splat:

◇ From micro-arch. tricks

◇ Or from 2nd non-FMA ALU

◇ Prefer vfmv.v.f (1) to other methods

◆ If no simultaneous LD+FMA: prefer “hoisting” (2)

◆ If OoO execution: probably still keep LMUL≥4!

◇ Good for energy reasons

Option 1: Scalar→Vector Move

Option 2: Hoist Moves out of Loop:

Option 3: Splat from Mem. w/ 0-Stride Load:

vfmv.v.f v12, f0 # v12[i] = c0
vfmv.v.f v16, f1 # v16[i] = c1
…
stripmine_loop:

vfmadd.vv v8, v4, v12 # P(x)*x + c0
 vfmadd.vv v8, v4, v16 # P(x)*x + c1
…

Case Study II: Range Reduction
Using mixed-width arithmetic for Cody-Waite range reduction

9

◆ r = x - zC reduction in FP32 precision
◇ scalar float constants f0+f1+f2 ~ -C

vfwmacc.vf v16,f2,v8 # ...+z*f2 (f64)

vsetvli s0,a1,e32,m4
vfmacc.vf v4,f0,v8 # x+z*f0

vfwmul.vf v16,v8,f1 # z*f1 (f64)

vfwadd.wv v16,v16,v4 # x+z*f0+z*f1 (f64)

vsetvli zero,zero,e64,m8

◆ Use RVV vector-scalar FMA to accumulate first term:

◆ Use vector-scalar widening multiply for second term:

◆ Accumulate intermediates with mixed-width addition:

◆ Accumulate last term with widening vector-scalar FMA:

◆ Continue on with double-precision reduced argument!

SiFive Kernel Library
Basically a vectorized C17 <math.h>

10

◆ IEEE-754 FP16, FP32, FP64 precisions

◆ Target accuracy: < 1 ulp (RNE only)

◆ Trigonometric functions

◆ Hyperbolic functions

◆ Exponential and logarithmic functions

◆ Power and absolute-value functions

◆ Error functions

◆ Nearest integer functions

◆ Remainder functions

◆ Manipulation functions

◆ etc.

Accuracy evaluation
Comparing apples to apples

11

◆ Exhaustive testing

whenever

reasonable (FP16

and univariate FP32)

◆ Pseudo-random

testing otherwise

◆ Uncovered accuracy

issues in SLEEF

routines

No SLEEF
logb

Accuracy evaluation
Comparing apples to apples

12

◆ Exhaustive testing

whenever

reasonable (FP16

and univariate FP32)

◆ Pseudo-random

testing otherwise

◆ Uncovered accuracy

issues in SLEEF

routines

No SLEEF
logb

Accuracy evaluation
Comparing apples to apples

13

◆ Exhaustive testing

whenever

reasonable (FP16

and univariate FP32)

◆ Pseudo-random

testing otherwise

◆ Uncovered accuracy

issues in SLEEF

routines

SiFive x280 Performance Evaluation
FP32

14

◆ Geomean of 18.9x

speedup vs Scalar

SLEEF

◆ ~11x speedup over

Scalar Newlib

◆ ~3x speedup over

RVV SLEEF

SiFive x280 Performance Evaluation
FP64

15

◆ Geomean of 8.9x

speedup over

Scalar SLEEF

◆ ~6x speedup over

Scalar Newlib

◆ ~2x speedup over

RVV-vectorized

SLEEF

SiFive x280 Performance Evaluation
FP16

16

◆ No FP16 library to

compare to

◆ Compare against

our FP32

implementations

◆ Geomean of 2.2x

speedup over FP32

Conclusions and Software Availability

17

● Our RVV implementations incorporated into SiFive Kernel Library
○ Currently proprietary, but planned to be open-sourced.

● SLEEF RVV port PR’ed to upstream code repository
○ https://github.com/sifive/sifive-sleef/tree/add-riscv-v-support
○ Accuracy issues reported to upstream project

● Key application: autovectorization
○ Compiler fuses independent scalar libm calls into a vector libcall
○ SiFive intern Hannah Leung (UIUC) gave proof-of-concept using LLVM's TargetLibraryInfo

● Related work (see paper for more references):
○ CORE-MATH (correct rounding) https://core-math.gitlabpages.inria.fr

● Future work:
○ Finish coverage of C/C++ math library at current accuracy
○ Reduced accuracy implementations (esp. for machine learning)
○ Help design future RISC-V ISA extensions

https://github.com/sifive/sifive-sleef/tree/add-riscv-v-support
https://core-math.gitlabpages.inria.fr

©2023 SiFive, Inc. All rights reserved. All trademarks referenced herein belong to their respective companies.
This presentation is intended for informational purposes only and does not form any type of warranty.

Certain information in this presentation may outline SiFive’s general product direction. The presentation shall
not serve to amend or affect the rights or obligations of SiFive or its licensees under any license or service
agreement or documentation relating to any SiFive product. The development, release, and timing of any
products, features, and functionality remains at SiFive’s sole discretion.

SIFIVE.COM

Thank you

19

Additional Slides

SiFive x280 Performance Evaluation

20

Accuracy Evaluation

21

