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Introduction and Contributions
AI/ML/HPC are data- and compute-intensive
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Data parallelism in numerical methods Contributions
Nonlinear mathematical functions (exp, log, erf...) often 

invoked many times on independent data.

◆ Scientific simulation

◆ Data analytics

◆ Machine learning

Vector Math Library: numerical methods selected for 

efficient mapping to vector hardware

◆ Navigate tradeoffs differently: e.g., may avoid 

control-flow divergence at cost of more arithmetic.

◆ Ported SLEEF, an open-source vector math 
library, to the RISC-V Vector ISA (RVV).

◆ Described key RVV features to optimize code 
for nonlinear functions on SiFive X280:

◇ Dynamic vector length
◇ Register grouping
◇ Vector-scalar instructions
◇ Broadcasting with zero-strided loads
◇ Mixed-width arithmetic instructions

◆ Demonstrated FP32 performance benefits of 
optimized code against SLEEF and Newlib at 
<1 ulp maximum error.



In this talk
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◆ Short introduction to RISC-V and its Vector Extension

◆ Overview of SiFive’s X280 processor

◆ Case-study I: polynomial evaluation

◆ Case-study II: Cody-Waite range reduction

◆ Accuracy and Performance Evaluation

◆ Perspectives
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RISC-V Instruction Set Architecture
A modular, extensible, open standard ISA

Programming model

◆ Started c. 2010, the fifth generation of 

reduced instruction set computing (RISC) 

research projects at UC-Berkeley.

◆ RISC-V International, a Swiss nonprofit, 

owns and maintains the specs.

◆ No restrictions on use of the ISA for 

development of hardware or software.

◆ RISC-V Vector extension (RVV) ratified in 

November 2021.

32 integer 
registers
x0-x31

32 floating 
point registers

f0-f31

32 vector 
registers
v0-v31

◆ Scalable vector register length (VLEN): 128b to 64kib.

◆ Vector registers can be dynamically regrouped into 

longer logical registers (LMUL = length multiplier).

◆ Dynamic vector length (vl) simplifies loop stripmining.



SiFive’s X280 Processor
Dual-Issue In-Order Scalar Pipeline with Loosely-Coupled Vector Unit
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◆ Main focus of our tuning

◆ RV64GCV, Zfh, Zvfh, and 

more

◆ Vector & scalar pipelines 

share common memory 

system

◆ Vector execution 

happens after scalar 

commit

◆ Three vector pipelines:

◇ Load, store, ALU

◇ Operate 

independently
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Case Study I: Polynomial Evaluation
Splatting Coefficient Operands
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◆ Polynomials at core of nonlinear functions:

◆ Many ways to evaluate:

◇ Estrin’s Scheme increases parallelism

◇ Horner’s Scheme minimizes # operations

P(x) = cnxn + cn-1x
n-1+...+c0

Pn-1 = FMA(x, Pn, cn)
Pn-2 = FMA(x, Pn-1, cn-1)
…

◆ Inductively computes P0 as

◆ Form chain of dependent fused mul-adds:
Pn = cn    ;   Pi = ci + xPi+1  ;   P0= P(x)

Each 1 instruction

vfmv.v.f  v12, f0     # v12[i] = c0
vfmadd.vv v8, v4, v12 # P(x)*x + c0

Both occupy 1 vector ALU on X280 (½ throughput)

Option 1: Scalar→Vector Move

vlse32    v12, (t0), zero
vfmadd.vv v8, v4, v12 # P(x)*x + c0

Option 3: Splat from Mem. w/ 0-Stride Load:

Load and FMA use sep. pipes in parallel

Option 2: Hoist Moves out of Loop:
vfmv.v.f  v12, f0     # v12[i] = c0
vfmv.v.f  v16, f1   # v16[i] = c1
…
stripmine_loop:

vfmadd.vv v8, v4, v12 # P(x)*x + c0
     vfmadd.vv v8, v4, v16 # P(x)*x + c1
…
Too much register pressure for high degree

Vector Values Scalar Value

◆ Problem: no RVV FMA with scalar addend

◆ Consider three possible solutions…



Case Study I: Polynomial Evaluation
Choosing a Vector Length Multiplier (LMUL)
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◆ Now splat+FMA operate in parallel:

◆ But: each FMA depends on prior’s result

◇ can’t enter pipeline until prior’s 1st beat exits

◇ ⇒ 6 stall cycles / term @ LMUL=1

◆ How to fix:

◇ Unroll stripmine loop, interleave iterations... or

◇ Increase LMUL to 4 ⇒ 8 beats / instruction

vlse32    v12, (t0), zero
vfmadd.vv v8, v4, v12 # P(x)*x + c0
vlse32    v16, (t1), zero
vfmadd.vv v8, v4, v16 # P(x)*x + c1
…

Vector ALU Datapath

. . .

S0

S1

S2

S7

S3-S6

X280 “DLEN”=256 bits

0 1 2 3Beat 0

Beat 1 12 13 14 15

4 6 75

9 10 118 1 FMA @ 
LMUL=1
[VLEN=512b]

6 cycles 
dead time 
before next 
FMA

(LMUL * VLEN / DLEN) >= Pipeline Depth Hides Latency



vlse32    v12, (t0), zero
vfmadd.vv v8, v4, v12 # P(x)*x + c0

vfmv.v.f  v12, f0     # v12[i] = c0
vfmadd.vv v8, v4, v12 # P(x)*x + c0

Case Study I: Polynomial Evaluation
Alternative Design Choices
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◆ Might make different choices on other platforms

◆ If more than 1 ALU, would want to:

◇ Unroll & interleave stripmine iterations

◇ Replace Horner with Estrin or “Higher-Order 

Horner” (accuracy consequences)

◆ If cheap scalar→vector splat:

◇ From micro-arch. tricks

◇ Or from 2nd non-FMA ALU

◇ Prefer vfmv.v.f (1) to other methods

◆ If no simultaneous LD+FMA: prefer “hoisting” (2)

◆ If OoO execution: probably still keep LMUL≥4!

◇ Good for energy reasons

Option 1: Scalar→Vector Move

Option 2: Hoist Moves out of Loop:

Option 3: Splat from Mem. w/ 0-Stride Load:

vfmv.v.f  v12, f0     # v12[i] = c0
vfmv.v.f  v16, f1   # v16[i] = c1
…
stripmine_loop:

vfmadd.vv v8, v4, v12 # P(x)*x + c0
     vfmadd.vv v8, v4, v16 # P(x)*x + c1
…



Case Study II: Range Reduction
Using mixed-width arithmetic for Cody-Waite range reduction
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◆ r = x - zC  reduction in FP32 precision
◇ scalar float constants f0+f1+f2 ~ -C

vfwmacc.vf v16,f2,v8  # ...+z*f2    (f64)

vsetvli  s0,a1,e32,m4
vfmacc.vf  v4,f0,v8   # x+z*f0

vfwmul.vf  v16,v8,f1  # z*f1 (f64)

vfwadd.wv  v16,v16,v4 # x+z*f0+z*f1 (f64)

vsetvli  zero,zero,e64,m8

◆ Use RVV vector-scalar FMA to accumulate first term:

◆ Use vector-scalar widening multiply for second term:

◆ Accumulate intermediates with mixed-width addition:

◆ Accumulate last term with widening vector-scalar FMA:

◆ Continue on with double-precision reduced argument!



SiFive Kernel Library
Basically a vectorized C17 <math.h>
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◆ IEEE-754 FP16, FP32, FP64 precisions

◆ Target accuracy: < 1 ulp (RNE only)

◆ Trigonometric functions

◆ Hyperbolic functions

◆ Exponential and logarithmic functions

◆ Power and absolute-value functions

◆ Error functions

◆ Nearest integer functions

◆ Remainder functions

◆ Manipulation functions

◆ etc.



Accuracy evaluation
Comparing apples to apples
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◆ Exhaustive testing 

whenever 

reasonable (FP16 

and univariate FP32)

◆ Pseudo-random 

testing otherwise

◆ Uncovered accuracy 

issues in SLEEF 

routines

No SLEEF 
logb
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Accuracy evaluation
Comparing apples to apples
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◆ Exhaustive testing 

whenever 

reasonable (FP16 

and univariate FP32)

◆ Pseudo-random 

testing otherwise

◆ Uncovered accuracy 

issues in SLEEF 

routines



SiFive x280 Performance Evaluation
FP32
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◆ Geomean of 18.9x 

speedup vs Scalar 

SLEEF

◆ ~11x speedup over 

Scalar Newlib

◆ ~3x speedup over 

RVV SLEEF



SiFive x280 Performance Evaluation
FP64
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◆ Geomean of 8.9x 

speedup over  

Scalar SLEEF

◆ ~6x speedup over 

Scalar Newlib

◆ ~2x speedup over 

RVV-vectorized 

SLEEF



SiFive x280 Performance Evaluation
FP16

16

◆ No FP16 library to 

compare to

◆ Compare against 

our FP32 

implementations

◆ Geomean of 2.2x 

speedup over FP32



Conclusions and Software Availability
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● Our RVV implementations incorporated into SiFive Kernel Library
○ Currently proprietary, but planned to be open-sourced. 

● SLEEF RVV port PR’ed to upstream code repository
○ https://github.com/sifive/sifive-sleef/tree/add-riscv-v-support 
○ Accuracy issues reported to upstream project

● Key application: autovectorization
○ Compiler fuses independent scalar libm calls into a vector libcall
○ SiFive intern Hannah Leung (UIUC) gave proof-of-concept using LLVM's TargetLibraryInfo

● Related work (see paper for more references):
○ CORE-MATH (correct rounding) https://core-math.gitlabpages.inria.fr

● Future work:
○ Finish coverage of C/C++ math library at current accuracy
○ Reduced accuracy implementations (esp. for machine learning)
○ Help design future RISC-V ISA extensions

https://github.com/sifive/sifive-sleef/tree/add-riscv-v-support
https://core-math.gitlabpages.inria.fr
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Additional Slides



SiFive x280 Performance Evaluation
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Accuracy Evaluation
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