
Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

A multiplier-free RNS-based CNN accelerator
exploiting bit-level sparsity

V. Sakellariou1, V. Paliouras2, I. Kouretas2, H. Saleh1,
T. Stouraitis1

1Department of Electrical Engineering and Computer Science
Khalifa University

2Department of Electrical and Computer Engineering
University of Patras

30th IEEE International Symposium on Computer Arithmetic,
Portland, Oregon, USA. September 4-6, 2023.

1 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Table of Contents

1 Introduction

2 Proposed PE (exploiting bit-level sparsity)

3 Overall CNN Architecture

4 Results

2 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Presentation Outline

1 Introduction

2 Proposed PE (exploiting bit-level sparsity)

3 Overall CNN Architecture

4 Results

3 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

RNS Basics

In RNS, integers are represented by their residues with respect
to a modulus set: B = {m1,m2, . . . ,mK}

X 7→ (x1, x2, . . . , xK ), xi = ⟨X ⟩mi (1)

Multiplication and addition are done independently and in
parallel in each channel
a⊕ b =

(
⟨a1 ⊕ b1⟩m1 , ⟨a2 ⊕ b2⟩m2 , . . . , ⟨aN ⊕ bN⟩mK

)
Large number computations
are decomposed into smaller

Smaller critical path →
higher frequencies or
reduced power dissipation

Efficient implementation of
MAC → good candidate for
use in CNNs

4 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

RNS Basics

In RNS, integers are represented by their residues with respect
to a modulus set: B = {m1,m2, . . . ,mK}

X 7→ (x1, x2, . . . , xK ), xi = ⟨X ⟩mi (1)

Multiplication and addition are done independently and in
parallel in each channel
a⊕ b =

(
⟨a1 ⊕ b1⟩m1 , ⟨a2 ⊕ b2⟩m2 , . . . , ⟨aN ⊕ bN⟩mK

)

Large number computations
are decomposed into smaller

Smaller critical path →
higher frequencies or
reduced power dissipation

Efficient implementation of
MAC → good candidate for
use in CNNs

4 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

RNS Basics

In RNS, integers are represented by their residues with respect
to a modulus set: B = {m1,m2, . . . ,mK}

X 7→ (x1, x2, . . . , xK ), xi = ⟨X ⟩mi (1)

Multiplication and addition are done independently and in
parallel in each channel
a⊕ b =

(
⟨a1 ⊕ b1⟩m1 , ⟨a2 ⊕ b2⟩m2 , . . . , ⟨aN ⊕ bN⟩mK

)
Large number computations
are decomposed into smaller

Smaller critical path →
higher frequencies or
reduced power dissipation

Efficient implementation of
MAC → good candidate for
use in CNNs

4 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

RNS Basics

In RNS, integers are represented by their residues with respect
to a modulus set: B = {m1,m2, . . . ,mK}

X 7→ (x1, x2, . . . , xK ), xi = ⟨X ⟩mi (1)

Multiplication and addition are done independently and in
parallel in each channel
a⊕ b =

(
⟨a1 ⊕ b1⟩m1 , ⟨a2 ⊕ b2⟩m2 , . . . , ⟨aN ⊕ bN⟩mK

)
Large number computations
are decomposed into smaller

Smaller critical path →
higher frequencies or
reduced power dissipation

Efficient implementation of
MAC → good candidate for
use in CNNs

4 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free PE

Figure: Modulo-7 Convolution

Register File
M
U
X+

Weight

Y
(k)
oFmap

Figure: Direct implementation is the Multiplier-free
(MF) PE → 1 log2 C -bit adder and C registers

Use many small
word-length RNS channels

small set of uniformly
distributed weights

increased number of
common factors

perform the additions
first and then
multiplications

trivial/fixed operand
mult. → simplified
implementation

5 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free PE

Figure: Modulo-7 Convolution

Register File
M
U
X+

Weight

Y
(k)
oFmap

Figure: Direct implementation is the Multiplier-free
(MF) PE → 1 log2 C -bit adder and C registers

Use many small
word-length RNS channels

small set of uniformly
distributed weights

increased number of
common factors

perform the additions
first and then
multiplications

trivial/fixed operand
mult. → simplified
implementation

5 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free PE

Figure: Modulo-7 Convolution

Register File
M
U
X+

Weight

Y
(k)
oFmap

Figure: Direct implementation is the Multiplier-free
(MF) PE → 1 log2 C -bit adder and C registers

Use many small
word-length RNS channels

small set of uniformly
distributed weights

increased number of
common factors

perform the additions
first and then
multiplications

trivial/fixed operand
mult. → simplified
implementation

5 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free PE

Figure: Modulo-7 Convolution

Register File
M
U
X+

Weight

Y
(k)
oFmap

Figure: Direct implementation is the Multiplier-free
(MF) PE → 1 log2 C -bit adder and C registers

Use many small
word-length RNS channels

small set of uniformly
distributed weights

increased number of
common factors

perform the additions
first and then
multiplications

trivial/fixed operand
mult. → simplified
implementation

5 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free Distributed PE

MUX

+

w0

0

Y
(k)
0

MUX

+

w1

0

Y
(k)
1

MUX

+

w2

0

Y
(k)
2

FmapWeight {w2w1w0}(k)

Figure: Distributed Multiplier-free (MF-D)
PE → log2 C adders and log2 C registers.

Examples

W = 5 = 101 →
Fmap is added to Y0,Y2

Problem

Under-utilization of adders in case of 0’s
Throughput: 1 Input / cycle

6 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free Distributed PE

MUX

+

w0

0

Y
(k)
0

MUX

+

w1

0

Y
(k)
1

MUX

+

w2

0

Y
(k)
2

FmapWeight {w2w1w0}(k)

Figure: Distributed Multiplier-free (MF-D)
PE → log2 C adders and log2 C registers.

Examples

W = 5 = 101 →
Fmap is added to Y0,Y2

Problem

Under-utilization of adders in case of 0’s
Throughput: 1 Input / cycle

6 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Motivation: Multiplier-free Distributed PE

MUX

+

w0

0

Y
(k)
0

MUX

+

w1

0

Y
(k)
1

MUX

+

w2

0

Y
(k)
2

FmapWeight {w2w1w0}(k)

Figure: Distributed Multiplier-free (MF-D)
PE → log2 C adders and log2 C registers.

Examples

W = 5 = 101 →
Fmap is added to Y0,Y2

Problem

Under-utilization of adders in case of 0’s
Throughput: 1 Input / cycle

6 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Presentation Outline

1 Introduction

2 Proposed PE (exploiting bit-level sparsity)

3 Overall CNN Architecture

4 Results

7 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Increasing effective throughput

MUX

+

w0

0

Y
(k)
0

MUX

+

w1

0

Y
(k)
1

MUX

+

w2

0

Y
(k)
2

FmapWeight {w2w1w0}(k)

To avoid under-utilization,
load two inputs per cycle

Conflict if two 1’s in the
same digital position

Examples

W1 = 100, W2=010 →
Fmap1 is added to Y2, Fmap2 is
added to Y1

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

sp = 0

sp = 0.1

sp = 0.2

sp = 0.3

sp = 0.4

sp = 0.5

l

P
c

Figure: Pc of an MF-D PE channel
for various sp vs l .

sp = num. of zero weights
total num. of weights

Conflict probability Pc

quickly increase as channel
word-length l increases

8 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Increasing effective throughput

MUX

+

w0

0

Y
(k)
0

MUX

+

w1

0

Y
(k)
1

MUX

+

w2

0

Y
(k)
2

FmapWeight {w2w1w0}(k)

To avoid under-utilization,
load two inputs per cycle

Conflict if two 1’s in the
same digital position

Examples

W1 = 100, W2=010 →
Fmap1 is added to Y2, Fmap2 is
added to Y1

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

sp = 0

sp = 0.1

sp = 0.2

sp = 0.3

sp = 0.4

sp = 0.5

l

P
c

Figure: Pc of an MF-D PE channel
for various sp vs l .

sp = num. of zero weights
total num. of weights

Conflict probability Pc

quickly increase as channel
word-length l increases

8 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Use a stack-like storage
element to store conflicted
inputs and minimize stalls

In case of 2 ‘0’s, adders
process previously
conflicted inputs

Higher sparsity translates
into higher throughput

Channel size also affects Pc

→ RNS is naturally more
suitable representation:
lower stall probability and
less hardware resources

MUX

+

sel0

...

Stack
wr0

Y
(k)
0

F k
0F

k
1

MUX

+

sel1

...

Stack
wr1

Y
(k)
1

F k
0F

k
1

MUX

+

sel2

...

Stack
wr2

Y
(k)
2

F k
0F

k
1

F
(k)
0 F

(k)
1

S = (sel ,wr)

Figure: MF-D-S PE . The PE

receives two FMAPs F
(k)
0 , F

(k)
1 , one

select signal (sel) for each of the
adders and a write-enable signal for
each of the stacks.

9 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Use a stack-like storage
element to store conflicted
inputs and minimize stalls

In case of 2 ‘0’s, adders
process previously
conflicted inputs

Higher sparsity translates
into higher throughput

Channel size also affects Pc

→ RNS is naturally more
suitable representation:
lower stall probability and
less hardware resources

MUX

+

sel0

...

Stack
wr0

Y
(k)
0

F k
0F

k
1

MUX

+

sel1

...

Stack
wr1

Y
(k)
1

F k
0F

k
1

MUX

+

sel2

...

Stack
wr2

Y
(k)
2

F k
0F

k
1

F
(k)
0 F

(k)
1

S = (sel ,wr)

Figure: MF-D-S PE . The PE

receives two FMAPs F
(k)
0 , F

(k)
1 , one

select signal (sel) for each of the
adders and a write-enable signal for
each of the stacks.

9 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Use a stack-like storage
element to store conflicted
inputs and minimize stalls

In case of 2 ‘0’s, adders
process previously
conflicted inputs

Higher sparsity translates
into higher throughput

Channel size also affects Pc

→ RNS is naturally more
suitable representation:
lower stall probability and
less hardware resources

MUX

+

sel0

...

Stack
wr0

Y
(k)
0

F k
0F

k
1

MUX

+

sel1

...

Stack
wr1

Y
(k)
1

F k
0F

k
1

MUX

+

sel2

...

Stack
wr2

Y
(k)
2

F k
0F

k
1

F
(k)
0 F

(k)
1

S = (sel ,wr)

Figure: MF-D-S PE . The PE

receives two FMAPs F
(k)
0 , F

(k)
1 , one

select signal (sel) for each of the
adders and a write-enable signal for
each of the stacks.

9 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Use a stack-like storage
element to store conflicted
inputs and minimize stalls

In case of 2 ‘0’s, adders
process previously
conflicted inputs

Higher sparsity translates
into higher throughput

Channel size also affects Pc

→ RNS is naturally more
suitable representation:
lower stall probability and
less hardware resources

MUX

+

sel0

...

Stack
wr0

Y
(k)
0

F k
0F

k
1

MUX

+

sel1

...

Stack
wr1

Y
(k)
1

F k
0F

k
1

MUX

+

sel2

...

Stack
wr2

Y
(k)
2

F k
0F

k
1

F
(k)
0 F

(k)
1

S = (sel ,wr)

Figure: MF-D-S PE . The PE

receives two FMAPs F
(k)
0 , F

(k)
1 , one

select signal (sel) for each of the
adders and a write-enable signal for
each of the stacks.

9 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

Examples

For a 5-bit channel with sp = 0:
T=1.12 (MF-D) →
T=1.32 (MF-D-S, S=1)

11 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

CSD encoding for reduced chance of stalls

Pc depends on the distribution of ‘1’s and ‘0’s in the input
weight vector.

An encoding that reduces the probability of conflicts (two ‘1’s
at the same position) would increase its throughput.

The number of the non-zero elements of the weight
representation can be minimized through the use of Canonical
Signed Digit (CSD).

In CSD, the value of each digit can be either 0, 1, or -1

Overhead: XOR gates needed to support subtractions

Examples

01110 → 1 0 0 (-1) 0
01101 → 0 1 1 0 1 stall is avoided

12 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

CSD encoding for reduced chance of stalls

Pc depends on the distribution of ‘1’s and ‘0’s in the input
weight vector.

An encoding that reduces the probability of conflicts (two ‘1’s
at the same position) would increase its throughput.

The number of the non-zero elements of the weight
representation can be minimized through the use of Canonical
Signed Digit (CSD).

In CSD, the value of each digit can be either 0, 1, or -1

Overhead: XOR gates needed to support subtractions

Examples

01110 → 1 0 0 (-1) 0
01101 → 0 1 1 0 1 stall is avoided

12 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

CSD encoding for reduced chance of stalls

Pc depends on the distribution of ‘1’s and ‘0’s in the input
weight vector.

An encoding that reduces the probability of conflicts (two ‘1’s
at the same position) would increase its throughput.

The number of the non-zero elements of the weight
representation can be minimized through the use of Canonical
Signed Digit (CSD).

In CSD, the value of each digit can be either 0, 1, or -1

Overhead: XOR gates needed to support subtractions

Examples

01110 → 1 0 0 (-1) 0
01101 → 0 1 1 0 1 stall is avoided

12 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

CSD encoding for reduced chance of stalls

Pc depends on the distribution of ‘1’s and ‘0’s in the input
weight vector.

An encoding that reduces the probability of conflicts (two ‘1’s
at the same position) would increase its throughput.

The number of the non-zero elements of the weight
representation can be minimized through the use of Canonical
Signed Digit (CSD).

In CSD, the value of each digit can be either 0, 1, or -1

Overhead: XOR gates needed to support subtractions

Examples

01110 → 1 0 0 (-1) 0
01101 → 0 1 1 0 1 stall is avoided

12 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

CSD encoding for reduced chance of stalls

Pc depends on the distribution of ‘1’s and ‘0’s in the input
weight vector.

An encoding that reduces the probability of conflicts (two ‘1’s
at the same position) would increase its throughput.

The number of the non-zero elements of the weight
representation can be minimized through the use of Canonical
Signed Digit (CSD).

In CSD, the value of each digit can be either 0, 1, or -1

Overhead: XOR gates needed to support subtractions

Examples

01110 → 1 0 0 (-1) 0
01101 → 0 1 1 0 1 stall is avoided

12 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

CSD encoding for reduced chance of stalls

4 6 8 10 12

0.2

0.4

0.6

0.8

1
sp = 0

sp = 0.25

sp = 0.5

sp = 0

sp = 0.25

sp = 0.5

l

P
c

Figure: Conflict probability Pc of an MF-D PE channel for various
sparsity levels sp and word lengths l . Blue color denotes binary encoding
while red denotes CSD encoding.

13 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Optimal encoding of pairs of weights

CSD doesn’t consider relative digit positions in weight pairs

Jointly encode pairs of weights to minimize conflicts/stalls

T (W ) denotes the position of the trailing non-zero digit of W

Lemma

A signed-digit encoding (not necessarily canonical)
E (Wa,Wb) : (Wa,Wb) 7→ (Ŵa, Ŵb), such that C (Ŵa, Ŵb) = 0,
for two non-zero weights, exists, if and only if:

T (Wa) ̸= T (Wb). (2)

Lemma

The probability Pc that no zero-conflict encoding for two weights
Wa,Wb exists, i.e., T (Wa) = T (Wb), is given by

Pc =
1

3
− 1

3 · 4n
. (3)

14 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Optimal encoding of pairs of weights

CSD doesn’t consider relative digit positions in weight pairs

Jointly encode pairs of weights to minimize conflicts/stalls

T (W ) denotes the position of the trailing non-zero digit of W

Lemma

A signed-digit encoding (not necessarily canonical)
E (Wa,Wb) : (Wa,Wb) 7→ (Ŵa, Ŵb), such that C (Ŵa, Ŵb) = 0,
for two non-zero weights, exists, if and only if:

T (Wa) ̸= T (Wb). (2)

Lemma

The probability Pc that no zero-conflict encoding for two weights
Wa,Wb exists, i.e., T (Wa) = T (Wb), is given by

Pc =
1

3
− 1

3 · 4n
. (3)

14 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Optimal encoding of pairs of weights

CSD doesn’t consider relative digit positions in weight pairs

Jointly encode pairs of weights to minimize conflicts/stalls

T (W ) denotes the position of the trailing non-zero digit of W

Lemma

A signed-digit encoding (not necessarily canonical)
E (Wa,Wb) : (Wa,Wb) 7→ (Ŵa, Ŵb), such that C (Ŵa, Ŵb) = 0,
for two non-zero weights, exists, if and only if:

T (Wa) ̸= T (Wb). (2)

Lemma

The probability Pc that no zero-conflict encoding for two weights
Wa,Wb exists, i.e., T (Wa) = T (Wb), is given by

Pc =
1

3
− 1

3 · 4n
. (3)

14 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Optimal encoding of pairs of weights

CSD doesn’t consider relative digit positions in weight pairs

Jointly encode pairs of weights to minimize conflicts/stalls

T (W ) denotes the position of the trailing non-zero digit of W

Lemma

A signed-digit encoding (not necessarily canonical)
E (Wa,Wb) : (Wa,Wb) 7→ (Ŵa, Ŵb), such that C (Ŵa, Ŵb) = 0,
for two non-zero weights, exists, if and only if:

T (Wa) ̸= T (Wb). (2)

Lemma

The probability Pc that no zero-conflict encoding for two weights
Wa,Wb exists, i.e., T (Wa) = T (Wb), is given by

Pc =
1

3
− 1

3 · 4n
. (3)

14 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Encoder scheme comparison

Table: Probability of a conflict Pc for mod 2n, mod(2n − 1) and
mod(2n + 1) and channel sizes n = 4 and n = 5

n
mod 2n mod (2n − 1) mod (2n + 1)‡

no enc CSD CSD/bin combined Opt. no enc CSD† CSD†/bin combined† Opt.† no enc CSD† CSD†/bin combined† Opt.‡

4 0.683 0.457 0.425 0.425 0.332 0.648 0.515 0.462 0.328 0.328 0.605 0.439 0.401 0.335 0.308
5 0.762 0.516 0.476 0.476 0.333 0.749 0.578 0.521 0.413 0.339 0.717 0.529 0.482 0.413 0.327

no enc: both weights in binary CSD: independent CSD encoding of weights †: no re-encoding after EAC Opt.: Optimal
CSD/bin: a, CSD; b, either binary or CSD combined: a, CSD, b, binary, bCSD, or b

′
CSD

‡: diminished-1 representation

Table: Speedup (×) for a mod-32
channel vs stack size S and sp

sp
S = 0 S = 1 S = 2

ZS†

Bin. CSD Opt. Bin. CSD Opt. Bin.

0 1.13 1.32 1.50 1.32 1.65 1.74 1.37 1
0.1 1.23 1.43 1.57 1.43 1.75 1.84 1.53 1.11
0.2 1.34 1.52 1.64 1.55 1.83 1.91 1.72 1.25
0.3 1.45 1.61 1.71 1.68 1.89 1.95 1.85 1.42
0.4 1.57 1.70 1.78 1.79 1.94 1.98 1.94 1.66
0.5 1.67 1.78 1.84 1.89 1.97 1.99 1.98 2
†: Zero skipping

Table: Hardware complexity (number
of gates) of the different encoders

Encoding mod 2n mod (2n − 1)

CSD 21 29
CSD/bin 50 71
Combined 80 112
Optimal 495 515

15 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Encoder scheme comparison

Table: Probability of a conflict Pc for mod 2n, mod(2n − 1) and
mod(2n + 1) and channel sizes n = 4 and n = 5

n
mod 2n mod (2n − 1) mod (2n + 1)‡

no enc CSD CSD/bin combined Opt. no enc CSD† CSD†/bin combined† Opt.† no enc CSD† CSD†/bin combined† Opt.‡

4 0.683 0.457 0.425 0.425 0.332 0.648 0.515 0.462 0.328 0.328 0.605 0.439 0.401 0.335 0.308
5 0.762 0.516 0.476 0.476 0.333 0.749 0.578 0.521 0.413 0.339 0.717 0.529 0.482 0.413 0.327

no enc: both weights in binary CSD: independent CSD encoding of weights †: no re-encoding after EAC Opt.: Optimal
CSD/bin: a, CSD; b, either binary or CSD combined: a, CSD, b, binary, bCSD, or b

′
CSD

‡: diminished-1 representation

Table: Speedup (×) for a mod-32
channel vs stack size S and sp

sp
S = 0 S = 1 S = 2

ZS†

Bin. CSD Opt. Bin. CSD Opt. Bin.

0 1.13 1.32 1.50 1.32 1.65 1.74 1.37 1
0.1 1.23 1.43 1.57 1.43 1.75 1.84 1.53 1.11
0.2 1.34 1.52 1.64 1.55 1.83 1.91 1.72 1.25
0.3 1.45 1.61 1.71 1.68 1.89 1.95 1.85 1.42
0.4 1.57 1.70 1.78 1.79 1.94 1.98 1.94 1.66
0.5 1.67 1.78 1.84 1.89 1.97 1.99 1.98 2
†: Zero skipping

Table: Hardware complexity (number
of gates) of the different encoders

Encoding mod 2n mod (2n − 1)

CSD 21 29
CSD/bin 50 71
Combined 80 112
Optimal 495 515

15 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Encoder scheme comparison

Table: Probability of a conflict Pc for mod 2n, mod(2n − 1) and
mod(2n + 1) and channel sizes n = 4 and n = 5

n
mod 2n mod (2n − 1) mod (2n + 1)‡

no enc CSD CSD/bin combined Opt. no enc CSD† CSD†/bin combined† Opt.† no enc CSD† CSD†/bin combined† Opt.‡

4 0.683 0.457 0.425 0.425 0.332 0.648 0.515 0.462 0.328 0.328 0.605 0.439 0.401 0.335 0.308
5 0.762 0.516 0.476 0.476 0.333 0.749 0.578 0.521 0.413 0.339 0.717 0.529 0.482 0.413 0.327

no enc: both weights in binary CSD: independent CSD encoding of weights †: no re-encoding after EAC Opt.: Optimal
CSD/bin: a, CSD; b, either binary or CSD combined: a, CSD, b, binary, bCSD, or b

′
CSD

‡: diminished-1 representation

Table: Speedup (×) for a mod-32
channel vs stack size S and sp

sp
S = 0 S = 1 S = 2

ZS†

Bin. CSD Opt. Bin. CSD Opt. Bin.

0 1.13 1.32 1.50 1.32 1.65 1.74 1.37 1
0.1 1.23 1.43 1.57 1.43 1.75 1.84 1.53 1.11
0.2 1.34 1.52 1.64 1.55 1.83 1.91 1.72 1.25
0.3 1.45 1.61 1.71 1.68 1.89 1.95 1.85 1.42
0.4 1.57 1.70 1.78 1.79 1.94 1.98 1.94 1.66
0.5 1.67 1.78 1.84 1.89 1.97 1.99 1.98 2
†: Zero skipping

Table: Hardware complexity (number
of gates) of the different encoders

Encoding mod 2n mod (2n − 1)

CSD 21 29
CSD/bin 50 71
Combined 80 112
Optimal 495 515

15 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Presentation Outline

1 Introduction

2 Proposed PE (exploiting bit-level sparsity)

3 Overall CNN Architecture

4 Results

16 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Processing Core

PEs that share the same weight are grouped together

Since the weight determines their operation, all PEs work in a
synchronized manner

1 No additional storage
elements/scheduling to
support the different
processing rates of PEs

2 Control logic is amortized
over 16 PEs

3 The CSD/optimal encoder is
also amortized; its overhead
becomes negligible

PE
··
··

··

··

Ak
00Bk

00

Y k
00Sk

o

PE
··
··

··

··

Ak
10Bk

10

Y k
10Sk

o

PE
··
··

··

··

Ak
20Bk

20

Y k
20Sk

o

PE
··
··

··

··

Ak
30Bk

30

Y k
30Sk

o

PE
··
··

··

··

Ak
01Bk

01

Y k
01Sk

o

PE
··
··

··

··

Ak
11Bk

11

Y k
11Sk

o

PE
··
··

··

··

Ak
21Bk

21

Y k
21Sk

o

PE
··
··

··

··

Ak
31Bk

31

Y k
31Sk

o

PE
··
··

··

··

Ak
02Bk

02

Y k
02Sk

o

PE
··
··

··

··

Ak
12Bk

12

Y k
12Sk

o

PE
··
··

··

··

Ak
22Bk

22

Y k
22Sk

o

PE
··
··

··

··

Ak
32Bk

32

Y k
32Sk

o

PE
··
··

··

··

Ak
03Bk

03

Y k
03Sk

o

PE
··
··

··

··

Ak
13Bk

13

Y k
13Sk

o

PE
··
··

··

··

Ak
23Bk

23

Y k
23Sk

o

PE
··
··

··

··

Ak
33Bk

33

Y k
33Sk

o

M
U
X

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

Y k
00

Y k
01

Y k
02

Y k
03

Y k
10

Y k
11

Y k
12

Y k
13

Y k
20

Y k
21

Y k
22

Y k
23

Y k
30

Y k
31

Y k
32

Y k
33

S
H
IF
T

A
D
D

n2k
Y k
out

nk

Wa Wb

BE BE

F
IF
O

FSM

8 8

22 22

Sk
o = {sel0, sel1,wrs ,wro}

4nk

Ak
i ,j

Bk
i ,j

Y k
i ,j

Sk
o

nk

nk

n2k

3

K

K

A
B

Core overhead:

shift-add units

one additional base extension unit

larger shift register array

weight FIFO buffers

17 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Processing Core

PEs that share the same weight are grouped together

Since the weight determines their operation, all PEs work in a
synchronized manner

1 No additional storage
elements/scheduling to
support the different
processing rates of PEs

2 Control logic is amortized
over 16 PEs

3 The CSD/optimal encoder is
also amortized; its overhead
becomes negligible

PE
··
··

··

··

Ak
00Bk

00

Y k
00Sk

o

PE
··
··

··

··

Ak
10Bk

10

Y k
10Sk

o

PE
··
··

··

··

Ak
20Bk

20

Y k
20Sk

o

PE
··
··

··

··

Ak
30Bk

30

Y k
30Sk

o

PE
··
··

··

··

Ak
01Bk

01

Y k
01Sk

o

PE
··
··

··

··

Ak
11Bk

11

Y k
11Sk

o

PE
··
··

··

··

Ak
21Bk

21

Y k
21Sk

o

PE
··
··

··

··

Ak
31Bk

31

Y k
31Sk

o

PE
··
··

··

··

Ak
02Bk

02

Y k
02Sk

o

PE
··
··

··

··

Ak
12Bk

12

Y k
12Sk

o

PE
··
··

··

··

Ak
22Bk

22

Y k
22Sk

o

PE
··
··

··

··

Ak
32Bk

32

Y k
32Sk

o

PE
··
··

··

··

Ak
03Bk

03

Y k
03Sk

o

PE
··
··

··

··

Ak
13Bk

13

Y k
13Sk

o

PE
··
··

··

··

Ak
23Bk

23

Y k
23Sk

o

PE
··
··

··

··

Ak
33Bk

33

Y k
33Sk

o

M
U
X

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

Y k
00

Y k
01

Y k
02

Y k
03

Y k
10

Y k
11

Y k
12

Y k
13

Y k
20

Y k
21

Y k
22

Y k
23

Y k
30

Y k
31

Y k
32

Y k
33

S
H
IF
T

A
D
D

n2k
Y k
out

nk

Wa Wb

BE BE

F
IF
O

FSM

8 8

22 22

Sk
o = {sel0, sel1,wrs ,wro}

4nk

Ak
i ,j

Bk
i ,j

Y k
i ,j

Sk
o

nk

nk

n2k

3

K

K

A
B

Core overhead:

shift-add units

one additional base extension unit

larger shift register array

weight FIFO buffers

17 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Processing Core

PEs that share the same weight are grouped together

Since the weight determines their operation, all PEs work in a
synchronized manner

1 No additional storage
elements/scheduling to
support the different
processing rates of PEs

2 Control logic is amortized
over 16 PEs

3 The CSD/optimal encoder is
also amortized; its overhead
becomes negligible

PE
··
··

··

··

Ak
00Bk

00

Y k
00Sk

o

PE
··
··

··

··

Ak
10Bk

10

Y k
10Sk

o

PE
··
··

··

··

Ak
20Bk

20

Y k
20Sk

o

PE
··
··

··

··

Ak
30Bk

30

Y k
30Sk

o

PE
··
··

··

··

Ak
01Bk

01

Y k
01Sk

o

PE
··
··

··

··

Ak
11Bk

11

Y k
11Sk

o

PE
··
··

··

··

Ak
21Bk

21

Y k
21Sk

o

PE
··
··

··

··

Ak
31Bk

31

Y k
31Sk

o

PE
··
··

··

··

Ak
02Bk

02

Y k
02Sk

o

PE
··
··

··

··

Ak
12Bk

12

Y k
12Sk

o

PE
··
··

··

··

Ak
22Bk

22

Y k
22Sk

o

PE
··
··

··

··

Ak
32Bk

32

Y k
32Sk

o

PE
··
··

··

··

Ak
03Bk

03

Y k
03Sk

o

PE
··
··

··

··

Ak
13Bk

13

Y k
13Sk

o

PE
··
··

··

··

Ak
23Bk

23

Y k
23Sk

o

PE
··
··

··

··

Ak
33Bk

33

Y k
33Sk

o

M
U
X

·
·
·
·
·
·
·
·
·
·
·
·
·
·
·
·

Y k
00

Y k
01

Y k
02

Y k
03

Y k
10

Y k
11

Y k
12

Y k
13

Y k
20

Y k
21

Y k
22

Y k
23

Y k
30

Y k
31

Y k
32

Y k
33

S
H
IF
T

A
D
D

n2k
Y k
out

nk

Wa Wb

BE BE

F
IF
O

FSM

8 8

22 22

Sk
o = {sel0, sel1,wrs ,wro}

4nk

Ak
i ,j

Bk
i ,j

Y k
i ,j

Sk
o

nk

nk

n2k

3

K

K

A
B

Core overhead:

shift-add units

one additional base extension unit

larger shift register array

weight FIFO buffers
17 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level Architecture and Dataflow

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Bank0 Bank1 Bank2 Bank3

WEIGHT MEMORY

EXTERNAL MEMORY

RNS to BIN

Base Extension

Block BufferBlock BufferBlock BufferBlock BufferBlock Buffer

Ac Bc

22×16 22×16

·

·

·

·

12

22

·

·

·

·

12

22

·

·

·

·

12

22

. . .

. . .

·· ·

·· ·
W (0,1)W (0,0)

. . .

W (1,7)

1616 16

PEPE
PEPE

CORE0,0

··
AcBc

··

· ·
··

W
(0,0)
aW

(0,0)
b

PEPE
PEPE

CORE1,0

··
AcBc

··

· ·
··

W
(1,0)
aW

(1,0)
b

A
S
P
0

Y00

Y10

·Fo0

PEPE
PEPE

CORE0,1

··
AcBc

··

· ·
··

W
(0,1)
aW

(0,1)
b

PEPE
PEPE

CORE1,1

··
AcBc

··

· ·
··

W
(1,1)
aW

(1,1)
b

A
S
P
1

Y01

Y11

·Fo1

PEPE
PEPE

CORE0,7

··
AcBc

··

· ·
··

W
(0,7)
aW

(0,7)
b

PEPE
PEPE

CORE1,7

··
AcBc

··

· ·
··

W
(1,7)
aW

(1,7)
b

A
S
P
7

Y07

Y17

·Fo7

16 RNS Cores

B = (5, 7, 31, 32, 33)

Data is represented in a reduced
RNS base of 8 or 12 bits

FMEM: stores intermediate
layer results in the reduced RNS
base, WMEM: stores weights

Base Extension: extend data to
the full RNS base (22 bits)

A 2-D input block is fetched
and broadcast to all cores

One Activation/Scaling Unit
per two cores

Block Buffer to decouple access
to FMEM

18 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level Architecture and Dataflow

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Bank0 Bank1 Bank2 Bank3

WEIGHT MEMORY

EXTERNAL MEMORY

RNS to BIN

Base Extension

Block BufferBlock BufferBlock BufferBlock BufferBlock Buffer

Ac Bc

22×16 22×16

·

·

·

·

12

22

·

·

·

·

12

22

·

·

·

·

12

22

. . .

. . .

·· ·

·· ·
W (0,1)W (0,0)

. . .

W (1,7)

1616 16

PEPE
PEPE

CORE0,0

··
AcBc

··

· ·
··

W
(0,0)
aW

(0,0)
b

PEPE
PEPE

CORE1,0

··
AcBc

··

· ·
··

W
(1,0)
aW

(1,0)
b

A
S
P
0

Y00

Y10

·Fo0

PEPE
PEPE

CORE0,1

··
AcBc

··

· ·
··

W
(0,1)
aW

(0,1)
b

PEPE
PEPE

CORE1,1

··
AcBc

··

· ·
··

W
(1,1)
aW

(1,1)
b

A
S
P
1

Y01

Y11

·Fo1

PEPE
PEPE

CORE0,7

··
AcBc

··

· ·
··

W
(0,7)
aW

(0,7)
b

PEPE
PEPE

CORE1,7

··
AcBc

··

· ·
··

W
(1,7)
aW

(1,7)
b

A
S
P
7

Y07

Y17

·Fo7

16 RNS Cores

B = (5, 7, 31, 32, 33)

Data is represented in a reduced
RNS base of 8 or 12 bits

FMEM: stores intermediate
layer results in the reduced RNS
base, WMEM: stores weights

Base Extension: extend data to
the full RNS base (22 bits)

A 2-D input block is fetched
and broadcast to all cores

One Activation/Scaling Unit
per two cores

Block Buffer to decouple access
to FMEM

18 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level Architecture and Dataflow

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Bank0 Bank1 Bank2 Bank3

WEIGHT MEMORY

EXTERNAL MEMORY

RNS to BIN

Base Extension

Block BufferBlock BufferBlock BufferBlock BufferBlock Buffer

Ac Bc

22×16 22×16

·

·

·

·

12

22

·

·

·

·

12

22

·

·

·

·

12

22

. . .

. . .

·· ·

·· ·
W (0,1)W (0,0)

. . .

W (1,7)

1616 16

PEPE
PEPE

CORE0,0

··
AcBc

··

· ·
··

W
(0,0)
aW

(0,0)
b

PEPE
PEPE

CORE1,0

··
AcBc

··

· ·
··

W
(1,0)
aW

(1,0)
b

A
S
P
0

Y00

Y10

·Fo0

PEPE
PEPE

CORE0,1

··
AcBc

··

· ·
··

W
(0,1)
aW

(0,1)
b

PEPE
PEPE

CORE1,1

··
AcBc

··

· ·
··

W
(1,1)
aW

(1,1)
b

A
S
P
1

Y01

Y11

·Fo1

PEPE
PEPE

CORE0,7

··
AcBc

··

· ·
··

W
(0,7)
aW

(0,7)
b

PEPE
PEPE

CORE1,7

··
AcBc

··

· ·
··

W
(1,7)
aW

(1,7)
b

A
S
P
7

Y07

Y17

·Fo7

16 RNS Cores

B = (5, 7, 31, 32, 33)

Data is represented in a reduced
RNS base of 8 or 12 bits

FMEM: stores intermediate
layer results in the reduced RNS
base, WMEM: stores weights

Base Extension: extend data to
the full RNS base (22 bits)

A 2-D input block is fetched
and broadcast to all cores

One Activation/Scaling Unit
per two cores

Block Buffer to decouple access
to FMEM

18 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level Architecture and Dataflow

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Bank0 Bank1 Bank2 Bank3

WEIGHT MEMORY

EXTERNAL MEMORY

RNS to BIN

Base Extension

Block BufferBlock BufferBlock BufferBlock BufferBlock Buffer

Ac Bc

22×16 22×16

·

·

·

·

12

22

·

·

·

·

12

22

·

·

·

·

12

22

. . .

. . .

·· ·

·· ·
W (0,1)W (0,0)

. . .

W (1,7)

1616 16

PEPE
PEPE

CORE0,0

··
AcBc

··

· ·
··

W
(0,0)
aW

(0,0)
b

PEPE
PEPE

CORE1,0

··
AcBc

··

· ·
··

W
(1,0)
aW

(1,0)
b

A
S
P
0

Y00

Y10

·Fo0

PEPE
PEPE

CORE0,1

··
AcBc

··

· ·
··

W
(0,1)
aW

(0,1)
b

PEPE
PEPE

CORE1,1

··
AcBc

··

· ·
··

W
(1,1)
aW

(1,1)
b

A
S
P
1

Y01

Y11

·Fo1

PEPE
PEPE

CORE0,7

··
AcBc

··

· ·
··

W
(0,7)
aW

(0,7)
b

PEPE
PEPE

CORE1,7

··
AcBc

··

· ·
··

W
(1,7)
aW

(1,7)
b

A
S
P
7

Y07

Y17

·Fo7

16 RNS Cores

B = (5, 7, 31, 32, 33)

Data is represented in a reduced
RNS base of 8 or 12 bits

FMEM: stores intermediate
layer results in the reduced RNS
base, WMEM: stores weights

Base Extension: extend data to
the full RNS base (22 bits)

A 2-D input block is fetched
and broadcast to all cores

One Activation/Scaling Unit
per two cores

Block Buffer to decouple access
to FMEM

18 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level Architecture and Dataflow

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Bank0 Bank1 Bank2 Bank3

WEIGHT MEMORY

EXTERNAL MEMORY

RNS to BIN

Base Extension

Block BufferBlock BufferBlock BufferBlock BufferBlock Buffer

Ac Bc

22×16 22×16

·

·

·

·

12

22

·

·

·

·

12

22

·

·

·

·

12

22

. . .

. . .

·· ·

·· ·
W (0,1)W (0,0)

. . .

W (1,7)

1616 16

PEPE
PEPE

CORE0,0

··
AcBc

··

· ·
··

W
(0,0)
aW

(0,0)
b

PEPE
PEPE

CORE1,0

··
AcBc

··

· ·
··

W
(1,0)
aW

(1,0)
b

A
S
P
0

Y00

Y10

·Fo0

PEPE
PEPE

CORE0,1

··
AcBc

··

· ·
··

W
(0,1)
aW

(0,1)
b

PEPE
PEPE

CORE1,1

··
AcBc

··

· ·
··

W
(1,1)
aW

(1,1)
b

A
S
P
1

Y01

Y11

·Fo1

PEPE
PEPE

CORE0,7

··
AcBc

··

· ·
··

W
(0,7)
aW

(0,7)
b

PEPE
PEPE

CORE1,7

··
AcBc

··

· ·
··

W
(1,7)
aW

(1,7)
b

A
S
P
7

Y07

Y17

·Fo7

16 RNS Cores

B = (5, 7, 31, 32, 33)

Data is represented in a reduced
RNS base of 8 or 12 bits

FMEM: stores intermediate
layer results in the reduced RNS
base, WMEM: stores weights

Base Extension: extend data to
the full RNS base (22 bits)

A 2-D input block is fetched
and broadcast to all cores

One Activation/Scaling Unit
per two cores

Block Buffer to decouple access
to FMEM

18 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level Architecture and Dataflow

Bank0 Bank1 Bank2 Bank3

FMAP MEMORY

Bank0 Bank1 Bank2 Bank3

WEIGHT MEMORY

EXTERNAL MEMORY

RNS to BIN

Base Extension

Block BufferBlock BufferBlock BufferBlock BufferBlock Buffer

Ac Bc

22×16 22×16

·

·

·

·

12

22

·

·

·

·

12

22

·

·

·

·

12

22

. . .

. . .

·· ·

·· ·
W (0,1)W (0,0)

. . .

W (1,7)

1616 16

PEPE
PEPE

CORE0,0

··
AcBc

··

· ·
··

W
(0,0)
aW

(0,0)
b

PEPE
PEPE

CORE1,0

··
AcBc

··

· ·
··

W
(1,0)
aW

(1,0)
b

A
S
P
0

Y00

Y10

·Fo0

PEPE
PEPE

CORE0,1

··
AcBc

··

· ·
··

W
(0,1)
aW

(0,1)
b

PEPE
PEPE

CORE1,1

··
AcBc

··

· ·
··

W
(1,1)
aW

(1,1)
b

A
S
P
1

Y01

Y11

·Fo1

PEPE
PEPE

CORE0,7

··
AcBc

··

· ·
··

W
(0,7)
aW

(0,7)
b

PEPE
PEPE

CORE1,7

··
AcBc

··

· ·
··

W
(1,7)
aW

(1,7)
b

A
S
P
7

Y07

Y17

·Fo7

16 RNS Cores

B = (5, 7, 31, 32, 33)

Data is represented in a reduced
RNS base of 8 or 12 bits

FMEM: stores intermediate
layer results in the reduced RNS
base, WMEM: stores weights

Base Extension: extend data to
the full RNS base (22 bits)

A 2-D input block is fetched
and broadcast to all cores

One Activation/Scaling Unit
per two cores

Block Buffer to decouple access
to FMEM

18 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Presentation Outline

1 Introduction

2 Proposed PE (exploiting bit-level sparsity)

3 Overall CNN Architecture

4 Results

19 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Sparsity and throughput exploration on CNN benchmarks

Table: Sparsity of CNN benchmarks and expected speedup

Network
(8-bit quant.)

Weight
Sparsity (%)

MF-D-S
Theoretical
Speedup*

MF-D-S
Simulation
Speedup*

ZS†

VGG19 42 1.82×/1.95× 1.79×/1.88× 1.72 ×
ResNet50 12 1.42×/1.77× 1.47×/1.76× 1.13 ×
Yolo3 40 1.80×/1.94× 1.80×/1.88× 1.67 ×

InceptionV3 8 1.40×/1.73× 1.43×/1.73× 1.08 ×
MobileNet 7 1.39×/1.73× 1.41×/1.73× 1.03 ×

∗: In entries of the form x/y , x refers to binary encoding and
y refers to CSD encoding (S = 1)

Proposed method results in 1.73× to 1.88× speedup

Takeaway

Unlike other sparse processing CNN architectures that rely on
zero-skipping and require high sparsity levels to become efficient,
the proposed method achieves gains with zero word-level sparsity
(exploits bit-level sparsity)

20 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Sparsity and throughput exploration on CNN benchmarks

Table: Sparsity of CNN benchmarks and expected speedup

Network
(8-bit quant.)

Weight
Sparsity (%)

MF-D-S
Theoretical
Speedup*

MF-D-S
Simulation
Speedup*

ZS†

VGG19 42 1.82×/1.95× 1.79×/1.88× 1.72 ×
ResNet50 12 1.42×/1.77× 1.47×/1.76× 1.13 ×
Yolo3 40 1.80×/1.94× 1.80×/1.88× 1.67 ×

InceptionV3 8 1.40×/1.73× 1.43×/1.73× 1.08 ×
MobileNet 7 1.39×/1.73× 1.41×/1.73× 1.03 ×

∗: In entries of the form x/y , x refers to binary encoding and
y refers to CSD encoding (S = 1)

Proposed method results in 1.73× to 1.88× speedup

Takeaway

Unlike other sparse processing CNN architectures that rely on
zero-skipping and require high sparsity levels to become efficient,
the proposed method achieves gains with zero word-level sparsity
(exploits bit-level sparsity)

20 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Sparsity and throughput exploration on CNN benchmarks

Table: Sparsity of CNN benchmarks and expected speedup

Network
(8-bit quant.)

Weight
Sparsity (%)

MF-D-S
Theoretical
Speedup*

MF-D-S
Simulation
Speedup*

ZS†

VGG19 42 1.82×/1.95× 1.79×/1.88× 1.72 ×
ResNet50 12 1.42×/1.77× 1.47×/1.76× 1.13 ×
Yolo3 40 1.80×/1.94× 1.80×/1.88× 1.67 ×

InceptionV3 8 1.40×/1.73× 1.43×/1.73× 1.08 ×
MobileNet 7 1.39×/1.73× 1.41×/1.73× 1.03 ×

∗: In entries of the form x/y , x refers to binary encoding and
y refers to CSD encoding (S = 1)

Proposed method results in 1.73× to 1.88× speedup

Takeaway

Unlike other sparse processing CNN architectures that rely on
zero-skipping and require high sparsity levels to become efficient,
the proposed method achieves gains with zero word-level sparsity
(exploits bit-level sparsity)

20 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Single PE comparisons

Table: PE comparison for various target clock
periods (0.5 V)

Tclk Area (µm2) Power (µW)

(ns) BNS RNS
MF-D-S†

BNS RNS
MF-D-S†

S = 0 S = 1 S = 0 S = 1

0.8 - - 420 592/625 - - 137 153/158
0.9 - 340 400 580/610 - 107 125 131/140
1.0 - 334 391 571/585 - 93 110 116/130
1.1 350 329 384 556/581 128 84 102 106/112
1.2 336 308 379 542/581 110 74 83 99/103

1.85× and 1.54× more energy efficient
processing compared to binary and
conventional RNS

The MF-D-S (S=1) PE achieves higher
energy efficiency gains

PRNS
PMF−D−S

× speedup as the clock period

becomes smaller and sparsity increases.

0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

Target Clock Period (ns)

S
p
ar
si
ty

Energy Efficiency Gains (0.5 V - binary)

0

0.5

1

1.5

2

0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

Target Clock Period (ns)

S
p
ar
si
ty

Energy Efficiency Gains (0.5 V - CSD)

0

0.5

1

1.5

2

CSD encoding can further
increase energy efficiency.

21 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Single PE comparisons

Table: PE comparison for various target clock
periods (0.5 V)

Tclk Area (µm2) Power (µW)

(ns) BNS RNS
MF-D-S†

BNS RNS
MF-D-S†

S = 0 S = 1 S = 0 S = 1

0.8 - - 420 592/625 - - 137 153/158
0.9 - 340 400 580/610 - 107 125 131/140
1.0 - 334 391 571/585 - 93 110 116/130
1.1 350 329 384 556/581 128 84 102 106/112
1.2 336 308 379 542/581 110 74 83 99/103

1.85× and 1.54× more energy efficient
processing compared to binary and
conventional RNS

The MF-D-S (S=1) PE achieves higher
energy efficiency gains

PRNS
PMF−D−S

× speedup as the clock period

becomes smaller and sparsity increases.

0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

Target Clock Period (ns)

S
p
ar
si
ty

Energy Efficiency Gains (0.5 V - binary)

0

0.5

1

1.5

2

0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

Target Clock Period (ns)

S
p
ar
si
ty

Energy Efficiency Gains (0.5 V - CSD)

0

0.5

1

1.5

2

CSD encoding can further
increase energy efficiency.

21 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Single PE comparisons

Table: PE comparison for various target clock
periods (0.5 V)

Tclk Area (µm2) Power (µW)

(ns) BNS RNS
MF-D-S†

BNS RNS
MF-D-S†

S = 0 S = 1 S = 0 S = 1

0.8 - - 420 592/625 - - 137 153/158
0.9 - 340 400 580/610 - 107 125 131/140
1.0 - 334 391 571/585 - 93 110 116/130
1.1 350 329 384 556/581 128 84 102 106/112
1.2 336 308 379 542/581 110 74 83 99/103

1.85× and 1.54× more energy efficient
processing compared to binary and
conventional RNS

The MF-D-S (S=1) PE achieves higher
energy efficiency gains

PRNS
PMF−D−S

× speedup as the clock period

becomes smaller and sparsity increases.

0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

Target Clock Period (ns)

S
p
ar
si
ty

Energy Efficiency Gains (0.5 V - binary)

0

0.5

1

1.5

2

0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

Target Clock Period (ns)

S
p
ar
si
ty

Energy Efficiency Gains (0.5 V - CSD)

0

0.5

1

1.5

2

CSD encoding can further
increase energy efficiency.

21 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Core-level comparisons

Table: Area and power breakdown of the various components

Units Components
Area† (µm2) Power† (µW)

BNS RNS MF-D-S BNS RNS MF-D-S

PE 350/277 329/279 556/529 128/220 93/140 120/229
Shift-add Unit - - 160/110 - - 20/25

FMAP Base Ext. - 250/190 250/190 - 61/86 61/86
Weight Base Ext. - 107/86 107/86 - 25/36 25/36

ASP Unit
Scaling +

ReLU + Pooling
622/600 5761/5450 5761/5450 118/202 384/615 384/615

Core
4×4 PE array +

BE (+shift-add unit)
6.27/5.3×103 6.30/5.43×103 10.35/9.23×103 1.98/3.50×103 1.63/2.73×103 2.04/3.36×103

†: In entries of the form x/y , x refers to a supply voltage of 0.5 V and y refers to 0.65 V

Area overhead is completely compensated by the increased
processing rate

Power efficiency can be increased by 31%–54% (57%–85%)
depending on the sparsity of the weights, compared to
conventional RNS (BNS)

22 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Core-level comparisons

Table: Area and power breakdown of the various components

Units Components
Area† (µm2) Power† (µW)

BNS RNS MF-D-S BNS RNS MF-D-S

PE 350/277 329/279 556/529 128/220 93/140 120/229
Shift-add Unit - - 160/110 - - 20/25

FMAP Base Ext. - 250/190 250/190 - 61/86 61/86
Weight Base Ext. - 107/86 107/86 - 25/36 25/36

ASP Unit
Scaling +

ReLU + Pooling
622/600 5761/5450 5761/5450 118/202 384/615 384/615

Core
4×4 PE array +

BE (+shift-add unit)
6.27/5.3×103 6.30/5.43×103 10.35/9.23×103 1.98/3.50×103 1.63/2.73×103 2.04/3.36×103

†: In entries of the form x/y , x refers to a supply voltage of 0.5 V and y refers to 0.65 V

Area overhead is completely compensated by the increased
processing rate

Power efficiency can be increased by 31%–54% (57%–85%)
depending on the sparsity of the weights, compared to
conventional RNS (BNS)

22 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level comparisons

Table: Comparisons to state-of-the-art implementations

Eyerissv2[1] ISSCC’20[2] ISSCC’22[3] RNSDNN[4]
This work

RNS
This work
MF-D-S

Process 65 nm 7 nm 65 nm 45 nm 22 nm 22 nm
Supply voltage (V) N/G 0.575–0.825 1 1 0.65 0.65

Frequency 200 MHz 290–880 MHz 400 MHz 1.2 GHz 1 GHz 1 GHz
On-chip Memory (KB) 246 2176 150 KB N/G 448 448

Bit Precision (FMAP,wgt) 8 8 8 16,8 12,8 12,8
Network AlexNet MobileNet-v1 VGG16 VGG16 VGG16 VGG16

Performance (GOPS†) 153.6 3604 N/G 134 220 364
Area (106 Gates) 2.69 N/G N/G 2.18 4.74 5.25

Area (mm2) N/G 3.04 4.47 N/G 0.94 1.04
Area Eff.(GOPS†/106 Gates) 57.1 N/G N/G 62 46.4 69.3

Power Eff. (TOPS†/W) 0.253 - 0.962‡ 3.28 - 6.66‡ 1.82 0.223 1.74/2.36∗ 1.98/3.12∗

∗: full system/on-chip power cons. †1 OP = 1 MAC ‡: for dense - sparse network N/G: not given

32% energy efficiency increase compared to RNS Counterpart

8.87× more energy efficient that state-of-the-art RNS CNN
accelerator

2.05× more energy efficient that sparse version of Eyeriss

23 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level comparisons

Table: Comparisons to state-of-the-art implementations

Eyerissv2[1] ISSCC’20[2] ISSCC’22[3] RNSDNN[4]
This work

RNS
This work
MF-D-S

Process 65 nm 7 nm 65 nm 45 nm 22 nm 22 nm
Supply voltage (V) N/G 0.575–0.825 1 1 0.65 0.65

Frequency 200 MHz 290–880 MHz 400 MHz 1.2 GHz 1 GHz 1 GHz
On-chip Memory (KB) 246 2176 150 KB N/G 448 448

Bit Precision (FMAP,wgt) 8 8 8 16,8 12,8 12,8
Network AlexNet MobileNet-v1 VGG16 VGG16 VGG16 VGG16

Performance (GOPS†) 153.6 3604 N/G 134 220 364
Area (106 Gates) 2.69 N/G N/G 2.18 4.74 5.25

Area (mm2) N/G 3.04 4.47 N/G 0.94 1.04
Area Eff.(GOPS†/106 Gates) 57.1 N/G N/G 62 46.4 69.3

Power Eff. (TOPS†/W) 0.253 - 0.962‡ 3.28 - 6.66‡ 1.82 0.223 1.74/2.36∗ 1.98/3.12∗

∗: full system/on-chip power cons. †1 OP = 1 MAC ‡: for dense - sparse network N/G: not given

32% energy efficiency increase compared to RNS Counterpart

8.87× more energy efficient that state-of-the-art RNS CNN
accelerator

2.05× more energy efficient that sparse version of Eyeriss

23 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

System-level comparisons

Table: Comparisons to state-of-the-art implementations

Eyerissv2[1] ISSCC’20[2] ISSCC’22[3] RNSDNN[4]
This work

RNS
This work
MF-D-S

Process 65 nm 7 nm 65 nm 45 nm 22 nm 22 nm
Supply voltage (V) N/G 0.575–0.825 1 1 0.65 0.65

Frequency 200 MHz 290–880 MHz 400 MHz 1.2 GHz 1 GHz 1 GHz
On-chip Memory (KB) 246 2176 150 KB N/G 448 448

Bit Precision (FMAP,wgt) 8 8 8 16,8 12,8 12,8
Network AlexNet MobileNet-v1 VGG16 VGG16 VGG16 VGG16

Performance (GOPS†) 153.6 3604 N/G 134 220 364
Area (106 Gates) 2.69 N/G N/G 2.18 4.74 5.25

Area (mm2) N/G 3.04 4.47 N/G 0.94 1.04
Area Eff.(GOPS†/106 Gates) 57.1 N/G N/G 62 46.4 69.3

Power Eff. (TOPS†/W) 0.253 - 0.962‡ 3.28 - 6.66‡ 1.82 0.223 1.74/2.36∗ 1.98/3.12∗

∗: full system/on-chip power cons. †1 OP = 1 MAC ‡: for dense - sparse network N/G: not given

32% energy efficiency increase compared to RNS Counterpart

8.87× more energy efficient that state-of-the-art RNS CNN
accelerator

2.05× more energy efficient that sparse version of Eyeriss

23 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

References

Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9,
no. 2, pp. 292–308, 2019.

C.-H. Lin, C.-C. Cheng, Y.-M. Tsai, S.-J. Hung, Y.-T. Kuo, P. H. Wang,
P.-K. Tsung, J.-Y. Hsu, W.-C. Lai, C.-H. Liu, S.-Y. Wang, C.-H. Kuo,
C.-Y. Chang, M.-H. Lee, T.-Y. Lin, and C.-C. Chen, “7.1 a
3.4-to-13.3tops/w 3.6tops dual-core deep-learning accelerator for versatile
ai applications in 7nm 5g smartphone soc,” in 2020 IEEE International
Solid- State Circuits Conference - (ISSCC), 2020, pp. 134–136.

Y. Ju and J. Gu, “A 65nm systolic neural cpu processor for combined deep
learning and general-purpose computing with 95locality and enhanced
end-to-end performance,” in 2022 IEEE International Solid- State Circuits
Conference (ISSCC), vol. 65, 2022, pp. 1–3.

N. Samimi, M. Kamal, A. Afzali-Kusha, and M. Pedram, “Res-DNN: A
Residue Number System-Based DNN Accelerator Unit,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 2, pp.
658–671, 2020.

24 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Q & A

Thank you!

25 / 25


	Introduction
	Proposed PE (exploiting bit-level sparsity)
	Overall CNN Architecture
	Results

