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RNS Basics

In RNS, integers are represented by their residues with respect
to a modulus set: B = {m1,m2, . . . ,mK}

X 7→ (x1, x2, . . . , xK ), xi = ⟨X ⟩mi (1)

Multiplication and addition are done independently and in
parallel in each channel
a⊕ b =

(
⟨a1 ⊕ b1⟩m1 , ⟨a2 ⊕ b2⟩m2 , . . . , ⟨aN ⊕ bN⟩mK

)
Large number computations
are decomposed into smaller

Smaller critical path →
higher frequencies or
reduced power dissipation

Efficient implementation of
MAC → good candidate for
use in CNNs
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Motivation: Multiplier-free PE

Figure: Modulo-7 Convolution

Register File
M
U
X+

Weight

Y
(k)
oFmap

Figure: Direct implementation is the Multiplier-free
(MF) PE → 1 log2 C -bit adder and C registers

Use many small
word-length RNS channels

small set of uniformly
distributed weights

increased number of
common factors

perform the additions
first and then
multiplications

trivial/fixed operand
mult. → simplified
implementation
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Motivation: Multiplier-free Distributed PE
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Figure: Distributed Multiplier-free (MF-D)
PE → log2 C adders and log2 C registers.

Examples

W = 5 = 101 →
Fmap is added to Y0,Y2

Problem

Under-utilization of adders in case of 0’s
Throughput: 1 Input / cycle
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Increasing effective throughput
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To avoid under-utilization,
load two inputs per cycle

Conflict if two 1’s in the
same digital position

Examples

W1 = 100, W2=010 →
Fmap1 is added to Y2, Fmap2 is
added to Y1
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Figure: Pc of an MF-D PE channel
for various sp vs l .

sp = num. of zero weights
total num. of weights

Conflict probability Pc

quickly increase as channel
word-length l increases
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Stack-based distributed PE (MF-D-S PE)

Use a stack-like storage
element to store conflicted
inputs and minimize stalls

In case of 2 ‘0’s, adders
process previously
conflicted inputs

Higher sparsity translates
into higher throughput

Channel size also affects Pc

→ RNS is naturally more
suitable representation:
lower stall probability and
less hardware resources
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Figure: MF-D-S PE . The PE

receives two FMAPs F
(k)
0 , F

(k)
1 , one

select signal (sel) for each of the
adders and a write-enable signal for
each of the stacks.
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Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa

3/4

1/4 1/4

1/2

1/4 1/4

1/2

1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

10 / 25



Introduction Proposed PE (exploiting bit-level sparsity) Overall CNN Architecture Results

Stack-based distributed PE (MF-D-S PE)

Model as Markov chain to calculate
probability of stalls Pc

State represents num. of elements
in stack

S0start S1 S2 Sa
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1/4

1

N =
∑∞

k=0 Qk = (I − Q)−1,
where Q is the transition matrix

stalls Ns=
(S+1)N

Ta
, Ta = N1

throughput T = 2N
N+Ns

Pc and thus throughput
depend on channel size l ,
sparsity sp and stack size S .

Examples

For a 5-bit channel with sp = 0:
T=1.12 (MF-D) →
T=1.32 (MF-D-S, S=1)
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CSD encoding for reduced chance of stalls

Pc depends on the distribution of ‘1’s and ‘0’s in the input
weight vector.

An encoding that reduces the probability of conflicts (two ‘1’s
at the same position) would increase its throughput.

The number of the non-zero elements of the weight
representation can be minimized through the use of Canonical
Signed Digit (CSD).

In CSD, the value of each digit can be either 0, 1, or -1

Overhead: XOR gates needed to support subtractions

Examples

01110 → 1 0 0 (-1) 0
01101 → 0 1 1 0 1 stall is avoided
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CSD encoding for reduced chance of stalls
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Figure: Conflict probability Pc of an MF-D PE channel for various
sparsity levels sp and word lengths l . Blue color denotes binary encoding
while red denotes CSD encoding.
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Optimal encoding of pairs of weights

CSD doesn’t consider relative digit positions in weight pairs

Jointly encode pairs of weights to minimize conflicts/stalls

T (W ) denotes the position of the trailing non-zero digit of W

Lemma

A signed-digit encoding (not necessarily canonical)
E (Wa,Wb) : (Wa,Wb) 7→ (Ŵa, Ŵb), such that C (Ŵa, Ŵb) = 0,
for two non-zero weights, exists, if and only if:

T (Wa) ̸= T (Wb). (2)

Lemma

The probability Pc that no zero-conflict encoding for two weights
Wa,Wb exists, i.e., T (Wa) = T (Wb), is given by

Pc =
1

3
− 1

3 · 4n
. (3)
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Encoder scheme comparison

Table: Probability of a conflict Pc for mod 2n, mod(2n − 1) and
mod(2n + 1) and channel sizes n = 4 and n = 5

n
mod 2n mod (2n − 1) mod (2n + 1)‡

no enc CSD CSD/bin combined Opt. no enc CSD† CSD†/bin combined† Opt.† no enc CSD† CSD†/bin combined† Opt.‡

4 0.683 0.457 0.425 0.425 0.332 0.648 0.515 0.462 0.328 0.328 0.605 0.439 0.401 0.335 0.308
5 0.762 0.516 0.476 0.476 0.333 0.749 0.578 0.521 0.413 0.339 0.717 0.529 0.482 0.413 0.327

no enc: both weights in binary CSD: independent CSD encoding of weights †: no re-encoding after EAC Opt.: Optimal
CSD/bin: a, CSD; b, either binary or CSD combined: a, CSD, b, binary, bCSD, or b

′
CSD

‡: diminished-1 representation

Table: Speedup (×) for a mod-32
channel vs stack size S and sp

sp
S = 0 S = 1 S = 2

ZS†
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PEs that share the same weight are grouped together

Since the weight determines their operation, all PEs work in a
synchronized manner

1 No additional storage
elements/scheduling to
support the different
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2 Control logic is amortized
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Sparsity and throughput exploration on CNN benchmarks

Table: Sparsity of CNN benchmarks and expected speedup

Network
(8-bit quant.)

Weight
Sparsity (%)

MF-D-S
Theoretical
Speedup*

MF-D-S
Simulation
Speedup*

ZS†

VGG19 42 1.82×/1.95× 1.79×/1.88× 1.72 ×
ResNet50 12 1.42×/1.77× 1.47×/1.76× 1.13 ×
Yolo3 40 1.80×/1.94× 1.80×/1.88× 1.67 ×

InceptionV3 8 1.40×/1.73× 1.43×/1.73× 1.08 ×
MobileNet 7 1.39×/1.73× 1.41×/1.73× 1.03 ×

∗: In entries of the form x/y , x refers to binary encoding and
y refers to CSD encoding (S = 1)

Proposed method results in 1.73× to 1.88× speedup

Takeaway

Unlike other sparse processing CNN architectures that rely on
zero-skipping and require high sparsity levels to become efficient,
the proposed method achieves gains with zero word-level sparsity
(exploits bit-level sparsity)
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Single PE comparisons

Table: PE comparison for various target clock
periods (0.5 V)

Tclk Area (µm2) Power (µW)

(ns) BNS RNS
MF-D-S†

BNS RNS
MF-D-S†

S = 0 S = 1 S = 0 S = 1

0.8 - - 420 592/625 - - 137 153/158
0.9 - 340 400 580/610 - 107 125 131/140
1.0 - 334 391 571/585 - 93 110 116/130
1.1 350 329 384 556/581 128 84 102 106/112
1.2 336 308 379 542/581 110 74 83 99/103

1.85× and 1.54× more energy efficient
processing compared to binary and
conventional RNS

The MF-D-S (S=1) PE achieves higher
energy efficiency gains

PRNS
PMF−D−S

× speedup as the clock period

becomes smaller and sparsity increases.
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CSD encoding can further
increase energy efficiency.
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Core-level comparisons

Table: Area and power breakdown of the various components

Units Components
Area† (µm2) Power† (µW)

BNS RNS MF-D-S BNS RNS MF-D-S

PE 350/277 329/279 556/529 128/220 93/140 120/229
Shift-add Unit - - 160/110 - - 20/25

FMAP Base Ext. - 250/190 250/190 - 61/86 61/86
Weight Base Ext. - 107/86 107/86 - 25/36 25/36

ASP Unit
Scaling +

ReLU + Pooling
622/600 5761/5450 5761/5450 118/202 384/615 384/615

Core
4×4 PE array +

BE (+shift-add unit)
6.27/5.3×103 6.30/5.43×103 10.35/9.23×103 1.98/3.50×103 1.63/2.73×103 2.04/3.36×103

†: In entries of the form x/y , x refers to a supply voltage of 0.5 V and y refers to 0.65 V

Area overhead is completely compensated by the increased
processing rate

Power efficiency can be increased by 31%–54% (57%–85%)
depending on the sparsity of the weights, compared to
conventional RNS (BNS)
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System-level comparisons

Table: Comparisons to state-of-the-art implementations

Eyerissv2[1] ISSCC’20[2] ISSCC’22[3] RNSDNN[4]
This work

RNS
This work
MF-D-S

Process 65 nm 7 nm 65 nm 45 nm 22 nm 22 nm
Supply voltage (V) N/G 0.575–0.825 1 1 0.65 0.65

Frequency 200 MHz 290–880 MHz 400 MHz 1.2 GHz 1 GHz 1 GHz
On-chip Memory (KB) 246 2176 150 KB N/G 448 448

Bit Precision (FMAP,wgt) 8 8 8 16,8 12,8 12,8
Network AlexNet MobileNet-v1 VGG16 VGG16 VGG16 VGG16

Performance (GOPS†) 153.6 3604 N/G 134 220 364
Area (106 Gates) 2.69 N/G N/G 2.18 4.74 5.25

Area (mm2) N/G 3.04 4.47 N/G 0.94 1.04
Area Eff.(GOPS†/106 Gates) 57.1 N/G N/G 62 46.4 69.3

Power Eff. (TOPS†/W) 0.253 - 0.962‡ 3.28 - 6.66‡ 1.82 0.223 1.74/2.36∗ 1.98/3.12∗

∗: full system/on-chip power cons. †1 OP = 1 MAC ‡: for dense - sparse network N/G: not given

32% energy efficiency increase compared to RNS Counterpart

8.87× more energy efficient that state-of-the-art RNS CNN
accelerator

2.05× more energy efficient that sparse version of Eyeriss
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Q & A

Thank you!
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