Improving Residue-Level Sparsity in RNS-based Neural Network Hardware Accelerators via Regularization

E. Kavvousanos ¹ <u>V. Sakellariou</u> ² I. Kouretas ¹ V. Paliouras ¹ T. Stouraitis ²

¹Department of Electrical and Computer Engineering, University of Patras, Greece ²Department of Electrical Engineering and Computer Science, Khalifa University, UAE

30th IEEE International Symposium on Computer Arithmetic ARITH 2023 Portland, September 5, 2023

IEEE ARITH 2023

Overview

1 Introduction

RNS basics

- Neural Network Regularization
- 2 Regularization for Residue-Level Sparsity
 - Proposed RNS-conscious regularization
 - Training Results
- 3 Hardware architectures exploiting residue sparsity
 - Memory cost reduction
 - Power consumption reduction
 - CNN architecture
- 4 Conclusions

1 Introduction

- RNS basics
- Neural Network Regularization
- 2 Regularization for Residue-Level Sparsity
 - Proposed RNS-conscious regularization
 - Training Results
- 3 Hardware architectures exploiting residue sparsity
 - Memory cost reduction
 - Power consumption reduction
 - CNN architecture
- 4 Conclusions

RNS basics

An RNS maps an integer x to a tuple X of N residues

$$x \to X = (x_1, x_2, \dots, x_N), \tag{1}$$

where $x_i = x \mod m_i$ and m_i , i = 1, 2, ..., N, form a set called base \mathcal{B} ,

$$\mathcal{B} = \{m_1, m_2, \dots, m_N\}.$$

Moduli m_i of \mathcal{B} are relatively co-prime; i.e.,

$$\gcd_{i \neq j}(m_i, m_j) = 1 \tag{3}$$

for all $i, j, 1 \le i, j \le N$. The dynamic range of the representation is determined by \mathcal{B} , as

$$M = \prod_{i=1}^{N} m_i. \tag{4}$$

Regularization is a set of strategies used in Machine Learning to reduce the generalization error, *i.e.*, overfitting.

Modify the loss function: add regularization terms:

$$J'(\theta; X, y) = J(\theta; X, y) + a \cdot R(\theta)$$
(5)

• L1 regularization:
$$R(heta) = \sum_i | heta_i|$$

- L2 regularization: $R(\theta) = \sum_i \theta_i^2$
- L1 and L2 regularization penalize large weights.

1 Introduction

• RNS basics

- Neural Network Regularization
- 2 Regularization for Residue-Level Sparsity
 - Proposed RNS-conscious regularization
 - Training Results
- 3 Hardware architectures exploiting residue sparsity
 - Memory cost reduction
 - Power consumption reduction
 - CNN architecture
- 4 Conclusions

Proposed RNS-conscious regularization

- Assume a subset $\mathcal{B}_{weight} \subset \mathcal{B}$.
- B_{weight} suffices to provide the dynamic range required for the representation of neural-network weights.
- The dynamic range provided by \mathcal{B}_{weight} for the representation of the weights w, is

$$\mathcal{M}_{\text{weight}} = \prod_{\forall m \in \mathcal{B}_{\text{weight}}} m.$$
 (6)

We propose the regularization function

$$R(w; \mathcal{B}, \mathcal{B}_w) = \lambda \prod_{i=1}^{N} \prod_{k=-\kappa_i}^{\kappa_i} \sigma_i \cdot (w \cdot M_{\text{weight}} - k \cdot m_i)^2, \qquad (7)$$

where λ , σ_i are chosen hyperparameters and $K_i = \left| \frac{\frac{1}{2} M_{\text{weight}}}{m_i} \right|$.

7/24

The values of σ_i are chosen such that the product of (7) neither decays nor explodes.
 During training, the regularization term (7) drives a weight w, to assume a value which when converted to an integer ŵ, is an integral multiple of m_i; therefore, the corresponding residue ŵ_i is zero, i.e.,

$$\widehat{w}_i = Q(wM_{weight}) \mod m_i = 0,$$

where Q(x) rounds its argument to the nearest integer.

In this way, the proposed regularization term increases the residue sparsity. For the case of a network with N_w weights, the regularization term (7) can be extended as

$$R(w; \mathcal{B}, \mathcal{B}_w) = \lambda \sum_{n=1}^{N_w} \prod_{i=1}^{N} \prod_{k=-K_i}^{K_i} \sigma_i \cdot (w_n \cdot M_{\text{weight}} - k \cdot m_i)^2,$$
(8)

Test case: CNN on CIFAR-10 benchmark.
Assuming an RNS:

Table: CNN architecture

Layer	Kernel Dimensions
Convolutional 2D	$3 \times 3 \times 3 \times 32$
Max Pooling (2×2)	-
Convolutional 2D	$3\times3\times32\times64$
Max Pooling (2×2)	-
Convolutional 2D	$3\times3\times64\times64$
Fully Connected	1024 imes 64
Fully Connected	64 imes10

$\mathcal{B} =$	{5,7,	31,	32,3	33}
M =	5 · 7 ·	31	32	. 33

CIFAR-10 CNN Example

Figure: Histogram of $\lfloor w \cdot M_{weight} \rfloor$ before (blue) and after (red) regularization. Base $\mathcal{B}_{weight} = \{7, 32\}$ is assumed. Figure: Histogram of $\lfloor w \cdot M_{weight} \rfloor$ before (blue) and after (red) regularization. Base $\mathcal{B}_{weight} = \{7, 33\}$ is assumed.

CIFAR-10 CNN Example

Figure: Histogram of $\lfloor w \cdot M_{weight} \rfloor$ before (blue) and after (red) regularization. Base $\mathcal{B}_{weight} = \{7, 32\}$ is assumed.

Figure: Histogram of $\lfloor w \cdot M_{weight} \rfloor$ before (blue) and after (red) regularization. Base $\mathcal{B}_{weight} = \{7, 33\}$ is assumed.

Figure: Histogram of

 $\lfloor w \cdot M_{weight} \rfloor$ before (blue) and after (red) regularization. Base $\mathcal{B}_{weight} = \{3, 7, 11\}$ is assumed.

11/24

VGG-16 Example

Test case: VGG-16 on ImageNet benchmark. Last Fully-Connected layer (4096 \times 1000 weights).

Figure: Histogram of $|w \cdot M_{weight}|$ before (blue) and after (red) regularization, for the last FC layer of VGG16 on ImageNet. Base $\mathcal{B}_{weight} = \{3, 7, 11\}$ is assumed.

of 11

of 7

Figure: Histogram of $|w \cdot M_{weight}|$ before (blue) and after (red) regularization, for the last FC layer of VGG16 on ImageNet. Base $\mathcal{B}_{weight} = \{7, 33\}$ is assumed.

without

with

regularization

regularization

Limiting the regularization loss

- Regularization loss (8) can assume extremely large values.
- Assume the regularization function:

$$R(w) = \lambda(w-3)^2(w-15)^2(w-30)^2.$$

- Parameters λ , σ_i of (8) are tuned to limit R(w).
- In our experiments, $\lambda \in \{10^{-2}, 10^{-1}, 1\}$ and $\sigma_i \in [10^{-4}, 10^{-3}]$ depending on the employed RNS base.

Computational complexity

- Application of regularization loss (8) can deteriorate training speed significantly.
- For a large number N of moduli and for large K_i.
- The double product of (8) is composed of P terms,

$$P = \sum_{i=1}^{N} (2K_i + 1).$$
 (9)

■ For B_{weight} = {7,32}, N = 2, and M_{weight} = 7 · 32 = 224. K₁ = 16, K₂ = 3, leading to P = 40 terms <u>per weight</u>.

\mathcal{B}_{weight}	Slowdown
Without regularization	1 imes
$\{7, 32\}$	9 imes
{7,33}	8.4 imes
$\{7, 9, 17\}$	15.8 imes
$\{5, 7, 17\}$	18.6 imes

1 Introduction

• RNS basics

- Neural Network Regularization
- 2 Regularization for Residue-Level Sparsity
 - Proposed RNS-conscious regularization
 - Training Results

3 Hardware architectures exploiting residue sparsity

- Memory cost reduction
- Power consumption reduction
- CNN architecture

4 Conclusions

Hardware architectures exploiting residue sparsity

- Exploit residue-level sparsity to:
 - Reduce memory cost
 - Reduce power consumption

Utilize low-cost moduli for the RNS bases

- $\blacksquare \ \mathcal{B} = \{5, 7, 31, 32, 33\}$
- $\blacksquare \ \mathcal{B}' = \{5, 7, 9, 16, 17, 31\}$
- $\blacksquare \ \mathcal{B}'' = \{3, 5, 7, 11, 31, 32\}$

Table: MAC Complexity for \mathcal{B}

MAC	Area		Power	
winte	(μm^2)	$(\%)^1$	(µW)	$(\%)^1$
modulo-5	14	4.6	5	4.1
modulo-7	28	9.3	14	11.6
modulo-31	70	23.3	37	30.6
modulo-32	33	11	16	13.2
modulo-33	156	51.8	49	40.4

Table: MAC Complexity for \mathcal{B}'

MAC	Area		Power	
in ic	(µm ²)	$(\%)^1$	(µW)	(%)1
modulo-5	14	5.1	5	4.2
modulo-7	28	10.3	14	11.7
modulo-9	50	18.5	22	18.3
modulo-16	24	8.8	11	9.2
modulo-17	84	31.1	31	25.8
modulo-31	70	25.9	37	30.8

Table: MAC Complexity for \mathcal{B}''

MAC	Area		Power	
Nin (C	(μm^2)	$(\%)^1$	(µW)	$(\%)^1$
modulo-3	10	4	4	3.8
modulo-5	14	5.6	5	4.7
modulo-7	28	11.3	14	13.3
modulo-11	93	37.5	29	27.7
modulo-31	70	28.2	37	35.2
modulo-32	33	13.3	16	15.2

16 / 24

Exploiting residue sparsity to reduce memory cost

- Commonly used compression schemes in sparse CNN architectures (CSC, CSR) are not suitable for the residue-sparse scenario
- Non-zero values occur at different indexes within the residue channels → multiple index vectors
- Utilize a variable-length encoding
- Compression ratio depends on the sparsity factors α_i .

$$G(d) = \begin{cases} 0, & \text{if } d = 0\\ 1d_{n-1}d_n \dots d_0, & \text{otherwise.} \end{cases}$$
(10)

The average size, \hat{n} , of the encoded word assuming base \mathcal{B} is given by

$$\widehat{n} = \alpha_0 + (3+1)(1-\alpha_0) + \alpha_1 + (5+1)(1-\alpha_0)$$
(11)
= 10 - 3\alpha_0 - 5\alpha_1. (12)

Using the sparsity factors $\alpha_0 = 0.8$ and $\alpha_1 = 0.14$, the average size of the encoded word is $\hat{n} = 6.9$ bits, translating to a 13.75% compression ratio.

Exploiting residue sparsity to reduce power consumption

- Zero-skipping per moduli channel.
- The workloads of the different residue channels become unbalanced, since the regularization results in different sparsity levels
- Each channel may complete its computation at potentially different times
- Deactivate (power gating) a residue channel when it completes the processing
- Power savings depend on the achieved sparsity of each channel and its contribution to the total power consumption

Base	\mathcal{B}	\mathcal{B}'	\mathcal{B}''
Power before regularization (μ W) Power after regularization (μ W)	121 102.8	120 101.9	105 92.7
Savings (%)	15	15.1	11.7

Table: RNS base comparison

- n (number of moduli) independent PE arrays of size M × M
- A non-zero detector module reads a window of weight values (encoded with respect to B_{weight}) and provides the next non-zero weight.
- The index of the next non-zero weight is used to select the corresponding input feature-map
- Base extension units are used to obtain the rest of the channels required for the convolution

- Different sparsity levels \rightarrow different processing rates for each channel
- Each channel requires a weight residue value from a different index of the weight vector at each timestep w^t_k
- $w_k^t = W[I_k(t)] \mod m_k$, where W is the weight vector, $I_k(t)$ denotes the index of the weight required by the k-th channel $(0 \le k < N)$ at time t.
- Base extension adds N_{be} channel to \mathcal{B}_{weight} to obtain \mathcal{B} $(N = N_w + N_{be})$.
- If $I_k(t)$ are different for all the first N_w channels, while $I_k(t) = t$ for $k \ge N_w$
- Need to decouple the access to the weights of each residue channel \rightarrow separate memory banks for each channel.
- At each timestep t, two weights from each channel are needed: one with an index of $I_k(t) \ge t$ and one with an index t required for the base extension \rightarrow dual-port RAM macros.

Weight Decoder

- Performs the decompression of the weight values, according to the proposed variable-length compression scheme.
- For each channel in \mathcal{B}_{weight} the weight decoder consists of a weight bit buffer, implemented with a programmable barrel shifter and a leading-one detector.
- The encoded weights are read from the corresponding weight memory bank and stored to the weight-bit buffer.
- The leading-one detector calculates the index of the next '1', corresponding to the next non-zero weight value, which determines the number of shift positions of the buffer.

Table:	MAC	and	Decoder	Comp	lexity
--------	-----	-----	---------	------	--------

Unit	Area (µm²)	Power (μW)
Decoder \mathcal{B}_{weight}	85	45
MAC B	301	121
Decoder \mathcal{B}'_{weight}	122	64
MAC \mathcal{B}'	270	120

- Decoder cost is small compared to MAC unit and amortized over a number if PEs
- For a 4 × 4 processing array the total decoder power consumption overhead is 2.3% and 3.3% for B_{weight} and B'_{weight}

21/24

1 Introduction

• RNS basics

- Neural Network Regularization
- 2 Regularization for Residue-Level Sparsity
 - Proposed RNS-conscious regularization
 - Training Results
- 3 Hardware architectures exploiting residue sparsity
 - Memory cost reduction
 - Power consumption reduction
 - CNN architecture

4 Conclusions

- Modification of ANN training to induce increased residue-level sparsity in weights by regularization.
- $4 \times$ to $6 \times$ increase in residue sparsity in certain cases with minimal accuracy drop.
- Comparative evaluation of RNS bases in the context of the proposed method.
- Importance of the choice of RNS base for the exploitation of residue sparsity.
- Exploitation of residue-level sparsity to improve RNS-based hardware accelerators.
- Focus on decreasing energy requirements in hardware accelerators.
- Promising results for the final fully-connected layer of the VGG16 model.
- Potential for the proposed regularization technique to lead to new RNS architectures.
- Possibility of RNS becoming a candidate for hardware accelerators in edge devices.
- Future work: Optimize the method to scale efficiently with large models.

Thank you!