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RNS basics

An RNS maps an integer x to a tuple X of N residues

x → X = (x1, x2, . . . , xN), (1)

where xi = x mod mi and mi , i = 1, 2, . . . ,N, form a set called base B,

B = {m1,m2, . . . ,mN} . (2)

Moduli mi of B are relatively co-prime; i.e.,

gcd
i ̸=j

(mi ,mj) = 1 (3)

for all i , j , 1 ≤ i , j ≤ N. The dynamic range of the representation is determined by B, as

M =
N∏
i=1

mi . (4)
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Neural Network Regularization

■ Regularization is a set of strategies used in Machine Learning to reduce the generalization
error, i.e., overfitting.

■ Modify the loss function: add regularization terms:

J ′(θ;X , y) = J(θ;X , y) + a · R(θ) (5)

■ L1 regularization: R(θ) =
∑

i |θi |
■ L2 regularization: R(θ) =

∑
i θ

2
i

■ L1 and L2 regularization penalize large weights.
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Proposed RNS-conscious regularization

■ Assume a subset Bweight ⊂ B.
■ Bweight suffices to provide the dynamic range required for the representation of

neural-network weights.

■ The dynamic range provided by Bweight for the representation of the weights w , is

Mweight =
∏

∀m∈Bweight

m. (6)

■ We propose the regularization function

R(w ;B,Bw ) = λ

N∏
i=1

Ki∏
k=−Ki

σi · (w ·Mweight − k ·mi )
2, (7)

where λ, σi are chosen hyperparameters and Ki =

⌊
1
2
Mweight

mi

⌋
.
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Proposed RNS-conscious regularization

■ The values of σi are chosen such that the product of (7) neither decays nor explodes.

■ During training, the regularization term (7) drives a weight w , to assume a value which
when converted to an integer ŵ , is an integral multiple of mi ; therefore, the
corresponding residue ŵi is zero, i.e.,

ŵi = Q(wMweight) mod mi = 0,

where Q(x) rounds its argument to the nearest integer.

■ In this way, the proposed regularization term increases the residue sparsity.

For the case of a network with Nw weights, the regularization term (7) can be extended as

R(w ;B,Bw ) = λ

Nw∑
n=1

N∏
i=1

Ki∏
k=−Ki

σi ·(wn·Mweight−k ·mi )
2, (8)
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Training Results

■ Test case: CNN on CIFAR-10 benchmark.

Table: CNN architecture

Layer Kernel Dimensions

Convolutional 2D 3× 3× 3× 32
Max Pooling (2× 2) –
Convolutional 2D 3× 3× 32× 64

Max Pooling (2× 2) –
Convolutional 2D 3× 3× 64× 64
Fully Connected 1024× 64
Fully Connected 64× 10

■ Assuming an RNS:

B = {5, 7, 31, 32, 33}
M = 5 · 7 · 31 · 32 · 33
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CIFAR-10 CNN Example
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Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization. Base
Bweight = {7, 32} is assumed.
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Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization. Base
Bweight = {7, 33} is assumed.
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Figure: Histogram of
⌊w ·Mweight⌋ before (blue) and
after (red) regularization. Base
Bweight = {3, 7, 11} is assumed.
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VGG-16 Example

■ Test case: VGG-16 on ImageNet benchmark.
■ Last Fully-Connected layer (4096× 1000 weights).
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Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization, for the last FC layer
of VGG16 on ImageNet. Base Bweight = {7, 33} is
assumed.
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of VGG16 on ImageNet. Base Bweight = {3, 7, 11} is
assumed.

IEEE ARITH 2023 Portland, September 5, 2023 12 / 24



Limiting the regularization loss

■ Regularization loss (8) can assume
extremely large values.

■ Assume the regularization function:

R(w) = λ(w − 3)2(w − 15)2(w − 30)2.

■ Parameters λ, σi of (8) are tuned to limit
R(w).

■ In our experiments, λ ∈
{
10−2, 10−1, 1

}
and σi ∈

[
10−4, 10−3

]
depending on the

employed RNS base.
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Computational complexity

■ Application of regularization loss (8) can
deteriorate training speed significantly.

■ For a large number N of moduli and for
large Ki .

■ The double product of (8) is composed of
P terms,

P =
N∑
i=1

(2Ki + 1). (9)

■ For Bweight = {7, 32}, N = 2, and
Mweight = 7 · 32 = 224. K1 = 16, K2 = 3,
leading to P = 40 terms per weight.

Table: Training slowdown

Bweight Slowdown

Without regularization 1×
{7, 32} 9×
{7, 33} 8.4×
{7, 9, 17} 15.8×
{5, 7, 17} 18.6×
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Hardware architectures exploiting residue sparsity

Exploit residue-level sparsity to:

■ Reduce memory cost

■ Reduce power consumption

Utilize low-cost moduli for the RNS bases

■ B = {5, 7, 31, 32, 33}
■ B′ = {5, 7, 9, 16, 17, 31}
■ B′′ = {3, 5, 7, 11, 31, 32}

Table: MAC Complexity for B

MAC
Area Power

(µm2) (%)1 (µW) (%)1

modulo-5 14 4.6 5 4.1
modulo-7 28 9.3 14 11.6
modulo-31 70 23.3 37 30.6
modulo-32 33 11 16 13.2
modulo-33 156 51.8 49 40.4

Table: MAC Complexity for B′

MAC
Area Power

(µm2) (%)1 (µW) (%)1

modulo-5 14 5.1 5 4.2
modulo-7 28 10.3 14 11.7
modulo-9 50 18.5 22 18.3
modulo-16 24 8.8 11 9.2
modulo-17 84 31.1 31 25.8
modulo-31 70 25.9 37 30.8

Table: MAC Complexity for B′′

MAC
Area Power

(µm2) (%)1 (µW) (%)1

modulo-3 10 4 4 3.8
modulo-5 14 5.6 5 4.7
modulo-7 28 11.3 14 13.3
modulo-11 93 37.5 29 27.7
modulo-31 70 28.2 37 35.2
modulo-32 33 13.3 16 15.2
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Exploiting residue sparsity to reduce memory cost

■ Commonly used compression schemes in sparse CNN architectures (CSC, CSR) are not
suitable for the residue-sparse scenario

■ Non-zero values occur at different indexes within the residue channels → multiple index
vectors

■ Utilize a variable-length encoding

■ Compression ratio depends on the sparsity factors αi .

G (d) =

{
0, if d = 0

1dn−1dn . . . d0, otherwise.
(10)

The average size, n̂, of the encoded word assuming base B is given by

n̂ = α0 + (3 + 1)(1− α0) + α1 + (5 + 1)(1− α0) (11)

= 10− 3α0 − 5α1. (12)

Using the sparsity factors α0 = 0.8 and α1 = 0.14, the average size of the encoded word is
n̂ = 6.9 bits, translating to a 13.75% compression ratio.
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Exploiting residue sparsity to reduce power consumption

■ Zero-skipping per moduli channel.

■ The workloads of the different residue channels become unbalanced, since the
regularization results in different sparsity levels

■ Each channel may complete its computation at potentially different times

■ Deactivate (power gating) a residue channel when it completes the processing

■ Power savings depend on the achieved sparsity of each channel and its contribution to the
total power consumption

Table: RNS base comparison

Base B B′ B′′

Power before regularization (µW) 121 120 105
Power after regularization (µW) 102.8 101.9 92.7

Savings (%) 15 15.1 11.7
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Overall CNN architecture

■ n (number of moduli) independent PE
arrays of size M ×M

■ A non-zero detector module reads a
window of weight values (encoded with
respect to Bweight) and provides the next
non-zero weight.

■ The index of the next non-zero weight is
used to select the corresponding input
feature-map

■ Base extension units are used to obtain
the rest of the channels required for the
convolution
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Memory Organization

■ Different sparsity levels → different processing rates for each channel

■ Each channel requires a weight residue value from a different index of the weight vector
at each timestep w t

k

■ w t
k = W [Ik(t)] mod mk , where W is the weight vector, Ik(t) denotes the index of the

weight required by the k-th channel (0 ≤ k < N) at time t.

■ Base extension adds Nbe channel to Bweight to obtain B (N = Nw + Nbe).

■ Ik(t) are different for all the first Nw channels, while Ik(t) = t for k ≥ Nw

■ Need to decouple the access to the weights of each residue channel → separate memory
banks for each channel.

■ At each timestep t, two weights from each channel are needed: one with an index of
Ik(t) ≥ t and one with an index t required for the base extension → dual-port RAM
macros.
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Weight Decoder

■ Performs the decompression of the weight values, according to the proposed
variable-length compression scheme.

■ For each channel in Bweight the weight decoder consists of a weight bit buffer,
implemented with a programmable barrel shifter and a leading-one detector.

■ The encoded weights are read from the corresponding weight memory bank and stored to
the weight-bit buffer.

■ The leading-one detector calculates the index of the next ‘1’, corresponding to the next
non-zero weight value, which determines the number of shift positions of the buffer.

Table: MAC and Decoder Complexity

Unit Area (µm2) Power (µW)

Decoder Bweight 85 45
MAC B 301 121

Decoder B′
weight 122 64

MAC B′ 270 120

■ Decoder cost is small compared to MAC
unit and amortized over a number if PEs

■ For a 4× 4 processing array the total
decoder power consumption overhead is
2.3% and 3.3% for Bweight and B′

weight
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Conclusions

■ Modification of ANN training to induce increased residue-level sparsity in weights by
regularization.

■ 4× to 6× increase in residue sparsity in certain cases with minimal accuracy drop.

■ Comparative evaluation of RNS bases in the context of the proposed method.

■ Importance of the choice of RNS base for the exploitation of residue sparsity.

■ Exploitation of residue-level sparsity to improve RNS-based hardware accelerators.

■ Focus on decreasing energy requirements in hardware accelerators.

■ Promising results for the final fully-connected layer of the VGG16 model.

■ Potential for the proposed regularization technique to lead to new RNS architectures.

■ Possibility of RNS becoming a candidate for hardware accelerators in edge devices.

■ Future work: Optimize the method to scale efficiently with large models.
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Thank you!

IEEE ARITH 2023 Portland, September 5, 2023 24 / 24


	
	Introduction
	RNS basics
	Neural Network Regularization

	Regularization for Residue-Level Sparsity
	Proposed RNS-conscious regularization
	Training Results

	Hardware architectures exploiting residue sparsity
	Memory cost reduction
	Power consumption reduction
	CNN architecture

	Conclusions

