
Improving Residue-Level Sparsity in RNS-based Neural Network
Hardware Accelerators via Regularization

E. Kavvousanos 1 V. Sakellariou 2 I. Kouretas 1 V. Paliouras 1 T. Stouraitis 2

1Department of Electrical and Computer Engineering, University of Patras, Greece
2Department of Electrical Engineering and Computer Science, Khalifa University, UAE

30th IEEE International Symposium on Computer Arithmetic
ARITH 2023

Portland, September 5, 2023

IEEE ARITH 2023 Portland, September 5, 2023 1 / 24

Overview

1 Introduction
RNS basics
Neural Network Regularization

2 Regularization for Residue-Level Sparsity
Proposed RNS-conscious regularization
Training Results

3 Hardware architectures exploiting residue sparsity
Memory cost reduction
Power consumption reduction
CNN architecture

4 Conclusions

IEEE ARITH 2023 Portland, September 5, 2023 2 / 24

Table of Contents

1 Introduction
RNS basics
Neural Network Regularization

2 Regularization for Residue-Level Sparsity
Proposed RNS-conscious regularization
Training Results

3 Hardware architectures exploiting residue sparsity
Memory cost reduction
Power consumption reduction
CNN architecture

4 Conclusions

IEEE ARITH 2023 Portland, September 5, 2023 3 / 24

RNS basics

An RNS maps an integer x to a tuple X of N residues

x → X = (x1, x2, . . . , xN), (1)

where xi = x mod mi and mi , i = 1, 2, . . . ,N, form a set called base B,

B = {m1,m2, . . . ,mN} . (2)

Moduli mi of B are relatively co-prime; i.e.,

gcd
i ̸=j

(mi ,mj) = 1 (3)

for all i , j , 1 ≤ i , j ≤ N. The dynamic range of the representation is determined by B, as

M =
N∏
i=1

mi . (4)

IEEE ARITH 2023 Portland, September 5, 2023 4 / 24

Neural Network Regularization

■ Regularization is a set of strategies used in Machine Learning to reduce the generalization
error, i.e., overfitting.

■ Modify the loss function: add regularization terms:

J ′(θ;X , y) = J(θ;X , y) + a · R(θ) (5)

■ L1 regularization: R(θ) =
∑

i |θi |
■ L2 regularization: R(θ) =

∑
i θ

2
i

■ L1 and L2 regularization penalize large weights.

IEEE ARITH 2023 Portland, September 5, 2023 5 / 24

Table of Contents

1 Introduction
RNS basics
Neural Network Regularization

2 Regularization for Residue-Level Sparsity
Proposed RNS-conscious regularization
Training Results

3 Hardware architectures exploiting residue sparsity
Memory cost reduction
Power consumption reduction
CNN architecture

4 Conclusions

IEEE ARITH 2023 Portland, September 5, 2023 6 / 24

Proposed RNS-conscious regularization

■ Assume a subset Bweight ⊂ B.
■ Bweight suffices to provide the dynamic range required for the representation of

neural-network weights.

■ The dynamic range provided by Bweight for the representation of the weights w , is

Mweight =
∏

∀m∈Bweight

m. (6)

■ We propose the regularization function

R(w ;B,Bw) = λ

N∏
i=1

Ki∏
k=−Ki

σi · (w ·Mweight − k ·mi)
2, (7)

where λ, σi are chosen hyperparameters and Ki =

⌊
1
2
Mweight

mi

⌋
.

IEEE ARITH 2023 Portland, September 5, 2023 7 / 24

Proposed RNS-conscious regularization

■ The values of σi are chosen such that the product of (7) neither decays nor explodes.

■ During training, the regularization term (7) drives a weight w , to assume a value which
when converted to an integer ŵ , is an integral multiple of mi ; therefore, the
corresponding residue ŵi is zero, i.e.,

ŵi = Q(wMweight) mod mi = 0,

where Q(x) rounds its argument to the nearest integer.

■ In this way, the proposed regularization term increases the residue sparsity.

For the case of a network with Nw weights, the regularization term (7) can be extended as

R(w ;B,Bw) = λ

Nw∑
n=1

N∏
i=1

Ki∏
k=−Ki

σi ·(wn·Mweight−k ·mi)
2, (8)

IEEE ARITH 2023 Portland, September 5, 2023 8 / 24

Training Results

■ Test case: CNN on CIFAR-10 benchmark.

Table: CNN architecture

Layer Kernel Dimensions

Convolutional 2D 3× 3× 3× 32
Max Pooling (2× 2) –
Convolutional 2D 3× 3× 32× 64

Max Pooling (2× 2) –
Convolutional 2D 3× 3× 64× 64
Fully Connected 1024× 64
Fully Connected 64× 10

■ Assuming an RNS:

B = {5, 7, 31, 32, 33}
M = 5 · 7 · 31 · 32 · 33

IEEE ARITH 2023 Portland, September 5, 2023 9 / 24

CIFAR-10 CNN Example

Multiples
of 7

Multiples
of 32

Other
0

2

4

6

8

10

·104

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization. Base
Bweight = {7, 32} is assumed.

Multiples
of 7

Multiples
of 33

Other
0

2

4

6

8

10

·104

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization. Base
Bweight = {7, 33} is assumed.

IEEE ARITH 2023 Portland, September 5, 2023 10 / 24

CIFAR-10 CNN Example

Multiples
of 7

Multiples
of 32

Other
0

2

4

6

8

10

·104

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of
⌊w ·Mweight⌋ before (blue) and
after (red) regularization. Base
Bweight = {7, 32} is assumed.

Multiples
of 7

Multiples
of 33

Other
0

2

4

6

8

10

·104

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of
⌊w ·Mweight⌋ before (blue) and
after (red) regularization. Base
Bweight = {7, 33} is assumed.

Multiples
of 3

Multiples
of 7

Multiples
of 11

Other
0

2

4

6

8

10
·104

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Multiples
of 3

Multiples
of 7

Multiples
of 11

Other
0

2

4

6

8

10
·104

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of
⌊w ·Mweight⌋ before (blue) and
after (red) regularization. Base
Bweight = {3, 7, 11} is assumed.

IEEE ARITH 2023 Portland, September 5, 2023 11 / 24

VGG-16 Example

■ Test case: VGG-16 on ImageNet benchmark.
■ Last Fully-Connected layer (4096× 1000 weights).

Multiples
of 7

Multiples
of 33

Other
0

1

2

3

4

·106

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization, for the last FC layer
of VGG16 on ImageNet. Base Bweight = {7, 33} is
assumed.

Multiples
of 3

Multiples
of 7

Multiples
of 11

Other
0

1

2

3

4

5
·106

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Multiples
of 3

Multiples
of 7

Multiples
of 11

Other
0

1

2

3

4

5
·106

N
o.

of
w
ei
gh

ts

without
regularization

with
regularization

Figure: Histogram of ⌊w ·Mweight⌋ before (blue)
and after (red) regularization, for the last FC layer
of VGG16 on ImageNet. Base Bweight = {3, 7, 11} is
assumed.

IEEE ARITH 2023 Portland, September 5, 2023 12 / 24

Limiting the regularization loss

■ Regularization loss (8) can assume
extremely large values.

■ Assume the regularization function:

R(w) = λ(w − 3)2(w − 15)2(w − 30)2.

■ Parameters λ, σi of (8) are tuned to limit
R(w).

■ In our experiments, λ ∈
{
10−2, 10−1, 1

}
and σi ∈

[
10−4, 10−3

]
depending on the

employed RNS base.

0 5 10 15 20 25 30
0

0.5

1

1.5

2
·106

w

R
(w

)

R(w), λ = 1

R(w), λ = 0.1

IEEE ARITH 2023 Portland, September 5, 2023 13 / 24

Computational complexity

■ Application of regularization loss (8) can
deteriorate training speed significantly.

■ For a large number N of moduli and for
large Ki .

■ The double product of (8) is composed of
P terms,

P =
N∑
i=1

(2Ki + 1). (9)

■ For Bweight = {7, 32}, N = 2, and
Mweight = 7 · 32 = 224. K1 = 16, K2 = 3,
leading to P = 40 terms per weight.

Table: Training slowdown

Bweight Slowdown

Without regularization 1×
{7, 32} 9×
{7, 33} 8.4×
{7, 9, 17} 15.8×
{5, 7, 17} 18.6×

IEEE ARITH 2023 Portland, September 5, 2023 14 / 24

Table of Contents

1 Introduction
RNS basics
Neural Network Regularization

2 Regularization for Residue-Level Sparsity
Proposed RNS-conscious regularization
Training Results

3 Hardware architectures exploiting residue sparsity
Memory cost reduction
Power consumption reduction
CNN architecture

4 Conclusions

IEEE ARITH 2023 Portland, September 5, 2023 15 / 24

Hardware architectures exploiting residue sparsity

Exploit residue-level sparsity to:

■ Reduce memory cost

■ Reduce power consumption

Utilize low-cost moduli for the RNS bases

■ B = {5, 7, 31, 32, 33}
■ B′ = {5, 7, 9, 16, 17, 31}
■ B′′ = {3, 5, 7, 11, 31, 32}

Table: MAC Complexity for B

MAC
Area Power

(µm2) (%)1 (µW) (%)1

modulo-5 14 4.6 5 4.1
modulo-7 28 9.3 14 11.6
modulo-31 70 23.3 37 30.6
modulo-32 33 11 16 13.2
modulo-33 156 51.8 49 40.4

Table: MAC Complexity for B′

MAC
Area Power

(µm2) (%)1 (µW) (%)1

modulo-5 14 5.1 5 4.2
modulo-7 28 10.3 14 11.7
modulo-9 50 18.5 22 18.3
modulo-16 24 8.8 11 9.2
modulo-17 84 31.1 31 25.8
modulo-31 70 25.9 37 30.8

Table: MAC Complexity for B′′

MAC
Area Power

(µm2) (%)1 (µW) (%)1

modulo-3 10 4 4 3.8
modulo-5 14 5.6 5 4.7
modulo-7 28 11.3 14 13.3
modulo-11 93 37.5 29 27.7
modulo-31 70 28.2 37 35.2
modulo-32 33 13.3 16 15.2

IEEE ARITH 2023 Portland, September 5, 2023 16 / 24

Exploiting residue sparsity to reduce memory cost

■ Commonly used compression schemes in sparse CNN architectures (CSC, CSR) are not
suitable for the residue-sparse scenario

■ Non-zero values occur at different indexes within the residue channels → multiple index
vectors

■ Utilize a variable-length encoding

■ Compression ratio depends on the sparsity factors αi .

G (d) =

{
0, if d = 0

1dn−1dn . . . d0, otherwise.
(10)

The average size, n̂, of the encoded word assuming base B is given by

n̂ = α0 + (3 + 1)(1− α0) + α1 + (5 + 1)(1− α0) (11)

= 10− 3α0 − 5α1. (12)

Using the sparsity factors α0 = 0.8 and α1 = 0.14, the average size of the encoded word is
n̂ = 6.9 bits, translating to a 13.75% compression ratio.

IEEE ARITH 2023 Portland, September 5, 2023 17 / 24

Exploiting residue sparsity to reduce power consumption

■ Zero-skipping per moduli channel.

■ The workloads of the different residue channels become unbalanced, since the
regularization results in different sparsity levels

■ Each channel may complete its computation at potentially different times

■ Deactivate (power gating) a residue channel when it completes the processing

■ Power savings depend on the achieved sparsity of each channel and its contribution to the
total power consumption

Table: RNS base comparison

Base B B′ B′′

Power before regularization (µW) 121 120 105
Power after regularization (µW) 102.8 101.9 92.7

Savings (%) 15 15.1 11.7

IEEE ARITH 2023 Portland, September 5, 2023 18 / 24

Overall CNN architecture

■ n (number of moduli) independent PE
arrays of size M ×M

■ A non-zero detector module reads a
window of weight values (encoded with
respect to Bweight) and provides the next
non-zero weight.

■ The index of the next non-zero weight is
used to select the corresponding input
feature-map

■ Base extension units are used to obtain
the rest of the channels required for the
convolution

IEEE ARITH 2023 Portland, September 5, 2023 19 / 24

Memory Organization

■ Different sparsity levels → different processing rates for each channel

■ Each channel requires a weight residue value from a different index of the weight vector
at each timestep w t

k

■ w t
k = W [Ik(t)] mod mk , where W is the weight vector, Ik(t) denotes the index of the

weight required by the k-th channel (0 ≤ k < N) at time t.

■ Base extension adds Nbe channel to Bweight to obtain B (N = Nw + Nbe).

■ Ik(t) are different for all the first Nw channels, while Ik(t) = t for k ≥ Nw

■ Need to decouple the access to the weights of each residue channel → separate memory
banks for each channel.

■ At each timestep t, two weights from each channel are needed: one with an index of
Ik(t) ≥ t and one with an index t required for the base extension → dual-port RAM
macros.

IEEE ARITH 2023 Portland, September 5, 2023 20 / 24

Weight Decoder

■ Performs the decompression of the weight values, according to the proposed
variable-length compression scheme.

■ For each channel in Bweight the weight decoder consists of a weight bit buffer,
implemented with a programmable barrel shifter and a leading-one detector.

■ The encoded weights are read from the corresponding weight memory bank and stored to
the weight-bit buffer.

■ The leading-one detector calculates the index of the next ‘1’, corresponding to the next
non-zero weight value, which determines the number of shift positions of the buffer.

Table: MAC and Decoder Complexity

Unit Area (µm2) Power (µW)

Decoder Bweight 85 45
MAC B 301 121

Decoder B′
weight 122 64

MAC B′ 270 120

■ Decoder cost is small compared to MAC
unit and amortized over a number if PEs

■ For a 4× 4 processing array the total
decoder power consumption overhead is
2.3% and 3.3% for Bweight and B′

weight

IEEE ARITH 2023 Portland, September 5, 2023 21 / 24

Table of Contents

1 Introduction
RNS basics
Neural Network Regularization

2 Regularization for Residue-Level Sparsity
Proposed RNS-conscious regularization
Training Results

3 Hardware architectures exploiting residue sparsity
Memory cost reduction
Power consumption reduction
CNN architecture

4 Conclusions

IEEE ARITH 2023 Portland, September 5, 2023 22 / 24

Conclusions

■ Modification of ANN training to induce increased residue-level sparsity in weights by
regularization.

■ 4× to 6× increase in residue sparsity in certain cases with minimal accuracy drop.

■ Comparative evaluation of RNS bases in the context of the proposed method.

■ Importance of the choice of RNS base for the exploitation of residue sparsity.

■ Exploitation of residue-level sparsity to improve RNS-based hardware accelerators.

■ Focus on decreasing energy requirements in hardware accelerators.

■ Promising results for the final fully-connected layer of the VGG16 model.

■ Potential for the proposed regularization technique to lead to new RNS architectures.

■ Possibility of RNS becoming a candidate for hardware accelerators in edge devices.

■ Future work: Optimize the method to scale efficiently with large models.

IEEE ARITH 2023 Portland, September 5, 2023 23 / 24

Thank you!

IEEE ARITH 2023 Portland, September 5, 2023 24 / 24

	
	Introduction
	RNS basics
	Neural Network Regularization

	Regularization for Residue-Level Sparsity
	Proposed RNS-conscious regularization
	Training Results

	Hardware architectures exploiting residue sparsity
	Memory cost reduction
	Power consumption reduction
	CNN architecture

	Conclusions

