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Energy efficiency through voltage scaling → Increased sensitivity to timing errors

Motivation: Circuits Prone to Timing Errors

Threaten the Correct System Functionality and Output Quality
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Source: Intel



o Power/timing guardbands

o Adaptive voltage/frequency scaling

o Impact evaluation through error injection schemes
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Data-agnostic 
models

Errors unrelated to 
circuits

Assume timing errors in 
all instruction types, 
rather than specific 

error-prone operations

Instruction-aware 
models

Use of accurate yet 
slow circuit-level timing 

analysis

Microarchitecture and 
workload agnostic

History-aware 
models

Developed in limited 
operating areas

Microarchitecture 
agnostic

Addressing Timing Errors
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Our contributions:

o We analyze the characteristics for accurate ML-based timing error modelling 

o Generation of synthetic data through stochastic search-based techniques to boost 

predictive performance

o Increased predictive performance in comparison to state-of-the-art ML-based 

approaches

o We showcase our approach by estimating the vulnerability of applications to timing 

errors.
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Proposed Approach
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Parameters affecting timing errors

o Instruction type & Input operands

o Instruction execution history

o Delay increase (e.g., voltage underscaling, 
frequency overscaling)
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Timing Errors in Pipelined Cores
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Challenges in ML-based Timing Error Modelling

o Collecting representative/adequate training 
samples traditionally due to low error rates

o Application profiling is very time-consuming and 
computationally expensive
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Timing Errors in Pipelined Cores
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Challenges in ML-based Timing Error Modelling

o Sufficient training data

▪ Satisfactory amount of training samples on the 
targeted operating regions

o Class ratio

▪ Achieving a certain degree of symmetry 
between the classes
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Timing Errors in Pipelined Cores
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o Instruction Generation: In this 
phase we have the generation 
of the error-prone ISQs

o Dynamic Timing Analysis: This 
phase examines the timing 
error manifestation and 
provides inputs to the Model 
Training and Model Evaluation 
phases

o Model Training: This phase is 
executed once to train the ML 
model

Our Workflow
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o Model Evaluation: During this phase, the trained 
model predicts the occurrence if timing errors for 
an unseen set of instructions



o We generate error-prone ISQs using a properly formulated 

genetic algorithm combined with post-layout dynamic timing 

analysis

o The generated ISQs maximize the output quality loss caused 

by timing errors

o GA generates 37K erroneous samples in ~20 hours
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Error-prone ISQ generation
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Error-prone ISQ generation
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(a) Initial population (b) Representation of GA components

(c) Gene exchange during crossover (d) The mutation process



o We gather training data by:

o Real-world application profiling under 4% (VR1), 8% (VR2) and 12% (VR3) voltage reduction levels

o Randomly generated instruction sequences (ISQs)

o GA-based generated error-prone ISQs

o Each ISQs consists of d instructions

o The input features are presented in a binary format as follows:

o 𝑂𝑃 𝑡 − 𝑑 + 1 , … , 𝑂𝑃 𝑡 , 𝑂𝑅𝑎 𝑡 − 𝑑 + 1 , 𝑂𝑅𝑏 𝑡 − 𝑑 + 1 , … , 𝑂𝑅𝑎 𝑡 , 𝑂𝑅𝑏 𝑡

o #𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑑 × (6 + 2 × 64)

o We assign labels using the typical ASIC flow (Synthesis, Place and Route, Dynamic Timing Analysis)

o We utilize supervised ML-based methods, in particular Random Forests (RF), to accurately predict 

the exact location of timing errors
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Model Formulation & Development
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o We evaluate our model using metrics commonly used in ML

o Accuracy

o True Positive Rate (sensitivity)

o True Negative Rate (specificity)

o The testing data is acquired similarly to the training data, under multiple assumed 

voltage reduction levels (VR1: 4%, VR2: 8%, VR3: 12%)

o We compare the performance of our model to state-of-the-art
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o Application on the mor1kx marocchino pipeline

o Floating point instructions are more susceptible to timing errors

o Floating point operations are dominant in various apps
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Application to an open-source CPU
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Experimental Results
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SOTA

o 1M samples per VR level

o Error ratio: 0.5%, 1% and 1.5% (under VR1, VR2, VR3 
respectively)

oRepresents the state-of-the-art-approach (Random 
Forest)

Proposed_NN

o Training data include the synthetically generated samples

oUpdated error ratio: 10.5%, 11%, 11.5% (under VR1, VR2, 
VR3 respectively)

o This approach utilizes exactly the same model and 
hyperparameters with the state-of-the-art
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o The GA-based generated error-prone ISQs can improve the predictive performance of AI-

based timing error models.

o The developed models can be leveraged to assess the vulnerability of applications to 

fault injection (FI) attacks.

o The models can assist in early design evaluation, or enable timing error prevention at 

runtime.
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Use Case: Identifying Attack-prone Code Regions
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o We examine the vulnerability of applications to attacks by measuring the significance-

aware code vulnerability factor (SCVF), defined as follows:

𝑆𝐶𝑉𝐹 =
1

#𝐼𝑆𝑄𝑠
⋅ 

𝑛=0

#𝐼𝑆𝑄𝑠



𝑖=0

𝐾
𝐶𝑖 ⋅ 2𝑖

2𝐾 − 1
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Use Case: Identifying Attack-prone Code Regions
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VR1 VR2 VR3

CG +27.4% +103.2% +115.2%

GAUSS +2.64% +12.96% +8.37%

HOTSPOT 0% +1.44% +36%

IS +0.61% +52.53% +44.18%

SOBEL +3.25% +3.86% +5.68%

SRAD +17.98% +20.63% +4.27%
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o  Improve microarchitecture and workload-aware NN-based timing error modelling 

through synthetic data generation.

o  Up to 115.2% higher TPR than the state-of-the-art

o  Average TPR increase by 8.65%, 32.44% and 35.62% (under VR1, VR2 and VR3 

respectively)

o  Improved timing error prediction can assist in reliability evaluation and security threat 

detection

25

Conclusions
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Thank you!
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