

Al-based Timing Error Modelling: A Case Study on a Pipelined Floating-Point Core

Styliani Tompazi, Ioannis Tsiokanos, Lev Mukhanov, Jesus Martinez del Rincon and Georgios Karakonstantis

*Institute of Electronics, Communications and Information Technology, Queen's University Belfast

The 30th IEEE International Symposium on Computer Arithmetic 4th – 6th September 2023

Introduction & Motivation

- Proposed approach & Workflow
- Experimental results
- Potential use cases
- Conclusions

Motivation: Circuits Prone to Timing Errors

Energy efficiency through voltage scaling \rightarrow Increased sensitivity to timing errors

Addressing Timing Errors

 \circ Power/timing guardbands

Adaptive voltage/frequency scaling

 \odot Impact evaluation through error injection schemes

- Introduction & Motivation
- Proposed approach & Workflow
- Experimental results
- Potential use cases
- Conclusions

Proposed Approach

Our contributions:

- \odot We analyze the characteristics for accurate ML-based timing error modelling
- Generation of synthetic data through stochastic search-based techniques to boost predictive performance
- Increased predictive performance in comparison to state-of-the-art ML-based approaches
- We showcase our approach by estimating the vulnerability of applications to timing errors.

Timing Errors in Pipelined Cores

Parameters affecting timing errors

- \odot Instruction type & Input operands
- $\ensuremath{\circ}$ Instruction execution history
- Delay increase (e.g., voltage underscaling, frequency overscaling)

A: OP(FP mul) ORa(0x41d2309ce5400000) ORb(0x3e800000000000000) B: OP(FP mul) ORa(0x42aecf56fd821a00) ORb(0x3e80500020a0c000) C: OP(FP mul) ORa(0x47509ce540000000) ORb(0x41becf5600000000) D: OP(FP sub) ORa(0x3e80000040000000) ORb(0x41401ac000000000) E: OP(FP add) ORa(0x41509ce540000000) ORb(0x3e80000040000000) E: OP(FP mul) ORa(0x41509ce541021578) ORb(0x7acbd5780001a987)	Output	A: 4062309CE5400000 B: 413ECF56FF6F0F70 C: 4917FD74F93C3800 D: 429FFE93049DAC00 E: 4158AA454000000 E: 7C2CE668225E115C			
CREORDER					
A: OP(FP mul) ORa(0x41d2309ce5400000) ORb(0x3e80000000000000) B: OP(FP mul) ORa(0x42aecf56fd821a00) ORb(0x3e80500020a0c000) C: OP(FP sub) ORa(0x3e8000004000000) ORb(0x41401ac000000000) D: OP(FP add) ORa(0x41509ce540000000) ORb(0x3e80000040000000) E: OP(FP mul) ORa(0x41509ce541021578) ORb(0x7acbd5780001a987) F: OP(FP mul) ORa(0x47509ce54000000) ORb(0x41becf560000000)	Output	A: 4062309CE5400000 B: 413ECF56FF6F0F70 C: 429FFE93049DAC00 D: 4158AA4540000000 E: 7C2CE668225E115C F: 491FFD74F93C3800			

Timing Errors in Pipelined Cores

12% (VR3)

8% (VR2)

4% (VR1)

60

8% (VR2)

4% (VR1)

60

50

50

€^{0.03}

0.01 Bit Ei

0.00

2.0

Ratio (%)

1.0 Error B 붊 0.5

0.0

10

20

SRAD

30

Bit

50

40

8% (VR2)

4% (VR1)

60

0 20.0 gt

Challenges in ML-based Timing Error Modelling

- Collecting representative/adequate training samples traditionally due to low error rates
- Application profiling is very time-consuming and computationally expensive

8

Timing Errors in Pipelined Cores

Challenges in ML-based Timing Error Modelling

- \odot Sufficient training data
 - Satisfactory amount of training samples on the targeted operating regions
- \circ Class ratio
 - Achieving a certain degree of symmetry between the classes

Our Workflow

- Instruction Generation: In this phase we have the generation of the error-prone ISQs
- Dynamic Timing Analysis: This phase examines the timing error manifestation and provides inputs to the Model Training and Model Evaluation phases
- Model Training: This phase is executed once to train the ML model

• Model Evaluation: During this phase, the trained model predicts the occurrence if timing errors for an unseen set of instructions

Error-prone ISQ generation

- We generate error-prone ISQs using a properly formulated genetic algorithm combined with post-layout dynamic timing analysis
- The generated ISQs maximize the output quality loss caused by timing errors
- \circ GA generates 37K erroneous samples in ~20 hours

Error-prone ISQ generation

(a) Initial population

(b) Representation of GA components

(d) The mutation process

Model Formulation & Development

 \odot We gather training data by:

- o Real-world application profiling under 4% (VR1), 8% (VR2) and 12% (VR3) voltage reduction levels
- Randomly generated instruction sequences (ISQs)
- $\,\circ\,$ GA-based generated error-prone ISQs

Each ISQs consists of *d* instructions

 \circ The input features are presented in a binary format as follows:

- $\circ \{OP(t-d+1), ..., OP(t), OR_a(t-d+1), OR_b(t-d+1), ..., OR_a(t), OR_b(t)\}$
- $\circ \ \#Features = d \times (6 + 2 \times 64)$

• We assign labels using the typical ASIC flow (Synthesis, Place and Route, Dynamic Timing Analysis)

 \circ We utilize supervised ML-based methods, in particular Random Forests (RF), to accurately predict

the exact location of timing errors

Model Evaluation & Acceleration

 \circ We evaluate our model using metrics commonly used in ML

 \circ Accuracy

 \odot True Positive Rate (sensitivity)

• True Negative Rate (specificity)

 The testing data is acquired similarly to the training data, under multiple assumed voltage reduction levels (VR1: 4%, VR2: 8%, VR3: 12%)

 \circ We compare the performance of our model to state-of-the-art

- Introduction & Motivation
- Proposed approach & Workflow
- Experimental results
- Potential use cases
- Conclusions

Application to an open-source CPU

○ Application on the mor1kx marocchino pipeline

Liming paths 10²

 \odot Floating point instructions are more susceptible to timing errors

Error-prone paths

• Floating point operations are dominant in various apps

0.5

1.5

Timing slack (ns)

FPU

Non-FPU

2

Experimental Results

SOTA

 $\odot\, 1M$ samples per VR level

- Error ratio: 0.5%, 1% and 1.5% (under VR1, VR2, VR3 respectively)
- Represents the state-of-the-art-approach (Random Forest)

Proposed_NN

- Training data include the synthetically generated samples
 Updated error ratio: 10.5%, 11%, 11.5% (under VR1, VR2, VR3 respectively)
- This approach utilizes exactly the same model and hyperparameters with the state-of-the-art

Experimental Results

Styliani Tompazi/QUB

Experimental Results

- Introduction & Motivation
- Proposed approach & Workflow
- Experimental results
- Potential use cases
- Conclusions

Use Case: Identifying Attack-prone Code Regions

- The GA-based generated error-prone ISQs can improve the predictive performance of AIbased timing error models.
- The developed models can be leveraged to assess the vulnerability of applications to fault injection (FI) attacks.
- The models can assist in early design evaluation, or enable timing error prevention at runtime.

Use Case: Identifying Attack-prone Code Regions

 \odot We examine the vulnerability of applications to attacks by measuring the significance-

aware code vulnerability factor (SCVF), defined as follows:

$$SCVF = \frac{1}{\#ISQs} \cdot \sum_{n=0}^{\#ISQs} \sum_{i=0}^{K} \frac{C_i \cdot 2^i}{2^K - 1}$$

	VR1	VR2	VR3
CG	+27.4%	+103.2%	+115.2%
GAUSS	+2.64%	+12.96%	+8.37%
HOTSPOT	0%	+1.44%	+36%
IS	+0.61%	+52.53%	+44.18%
SOBEL	+3.25%	+3.86%	+5.68%
SRAD	+17.98%	+20.63%	+4.27%

- Introduction & Motivation
- Proposed approach & Workflow
- Experimental results
- Potential use cases
- Conclusions

Conclusions

- Improve microarchitecture and workload-aware NN-based timing error modelling through synthetic data generation.
- Up to 115.2% higher TPR than the state-of-the-art
- Average TPR increase by 8.65%, 32.44% and 35.62% (under VR1, VR2 and VR3 respectively)
- Improved timing error prediction can assist in reliability evaluation and security threat detection

Thank you!