
AI-based Timing Error Modelling: A Case Study on a Pipelined Floating-
Point Core

𝐒𝐭𝐲𝐥𝐢𝐚𝐧𝐢 𝐓𝐨𝐦𝐩𝐚𝐳𝐢, 𝐈𝐨𝐚𝐧𝐧𝐢𝐬 𝐓𝐬𝐢𝐨𝐤𝐚𝐧𝐨𝐬, 𝐋𝐞𝐯 𝐌𝐮𝐤𝐡𝐚𝐧𝐨𝐯, 𝐉𝐞𝐬𝐮𝐬 𝐌𝐚𝐫𝐭𝐢𝐧𝐞𝐳 𝐝𝐞𝐥 𝐑𝐢𝐧𝐜𝐨𝐧 𝐚𝐧𝐝 𝐆𝐞𝐨𝐫𝐠𝐢𝐨𝐬 𝐊𝐚𝐫𝐚𝐤𝐨𝐧𝐬𝐭𝐚𝐧𝐭𝐢𝐬

*Institute of Electronics, Communications and Information Technology, Queen’s University Belfast

The 30th IEEE International Symposium on Computer
Arithmetic
4th – 6th September 2023

• Introduction & Motivation

• Proposed approach & Workflow

• Experimental results

• Potential use cases

• Conclusions

2

Outline

Styliani Tompazi/QUB

Static Variations Dynamic Variations Wear-out/Aging

3

Time [s] Time [y]

failure

failure

Energy efficiency through voltage scaling → Increased sensitivity to timing errors

Motivation: Circuits Prone to Timing Errors

Threaten the Correct System Functionality and Output Quality

Styliani Tompazi/QUB

Source: Intel

o Power/timing guardbands

o Adaptive voltage/frequency scaling

o Impact evaluation through error injection schemes

4

Data-agnostic
models

Errors unrelated to
circuits

Assume timing errors in
all instruction types,
rather than specific

error-prone operations

Instruction-aware
models

Use of accurate yet
slow circuit-level timing

analysis

Microarchitecture and
workload agnostic

History-aware
models

Developed in limited
operating areas

Microarchitecture
agnostic

Addressing Timing Errors

Styliani Tompazi/QUB

• Introduction & Motivation

• Proposed approach & Workflow

• Experimental results

• Potential use cases

• Conclusions

5

Outline

Styliani Tompazi/QUB

Our contributions:

o We analyze the characteristics for accurate ML-based timing error modelling

o Generation of synthetic data through stochastic search-based techniques to boost

predictive performance

o Increased predictive performance in comparison to state-of-the-art ML-based

approaches

o We showcase our approach by estimating the vulnerability of applications to timing

errors.

6

Proposed Approach

Styliani Tompazi/QUB

Parameters affecting timing errors

o Instruction type & Input operands

o Instruction execution history

o Delay increase (e.g., voltage underscaling,
frequency overscaling)

7

Timing Errors in Pipelined Cores

Styliani Tompazi/QUB

Challenges in ML-based Timing Error Modelling

o Collecting representative/adequate training
samples traditionally due to low error rates

o Application profiling is very time-consuming and
computationally expensive

8

Timing Errors in Pipelined Cores

Styliani Tompazi/QUB

CG GAUSS HOTSPOT

IS SOBEL SRAD

Challenges in ML-based Timing Error Modelling

o Sufficient training data

▪ Satisfactory amount of training samples on the
targeted operating regions

o Class ratio

▪ Achieving a certain degree of symmetry
between the classes

9

Timing Errors in Pipelined Cores

Styliani Tompazi/QUB

10

o Instruction Generation: In this
phase we have the generation
of the error-prone ISQs

o Dynamic Timing Analysis: This
phase examines the timing
error manifestation and
provides inputs to the Model
Training and Model Evaluation
phases

o Model Training: This phase is
executed once to train the ML
model

Our Workflow

Styliani Tompazi/QUB

o Model Evaluation: During this phase, the trained
model predicts the occurrence if timing errors for
an unseen set of instructions

o We generate error-prone ISQs using a properly formulated

genetic algorithm combined with post-layout dynamic timing

analysis

o The generated ISQs maximize the output quality loss caused

by timing errors

o GA generates 37K erroneous samples in ~20 hours

11

Error-prone ISQ generation

Styliani Tompazi/QUB

12

Error-prone ISQ generation

Styliani Tompazi/QUB

(a) Initial population (b) Representation of GA components

(c) Gene exchange during crossover (d) The mutation process

o We gather training data by:

o Real-world application profiling under 4% (VR1), 8% (VR2) and 12% (VR3) voltage reduction levels

o Randomly generated instruction sequences (ISQs)

o GA-based generated error-prone ISQs

o Each ISQs consists of d instructions

o The input features are presented in a binary format as follows:

o 𝑂𝑃 𝑡 − 𝑑 + 1 , … , 𝑂𝑃 𝑡 , 𝑂𝑅𝑎 𝑡 − 𝑑 + 1 , 𝑂𝑅𝑏 𝑡 − 𝑑 + 1 , … , 𝑂𝑅𝑎 𝑡 , 𝑂𝑅𝑏 𝑡

o #𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑑 × (6 + 2 × 64)

o We assign labels using the typical ASIC flow (Synthesis, Place and Route, Dynamic Timing Analysis)

o We utilize supervised ML-based methods, in particular Random Forests (RF), to accurately predict

the exact location of timing errors
13

Model Formulation & Development

Styliani Tompazi/QUB

o We evaluate our model using metrics commonly used in ML

o Accuracy

o True Positive Rate (sensitivity)

o True Negative Rate (specificity)

o The testing data is acquired similarly to the training data, under multiple assumed

voltage reduction levels (VR1: 4%, VR2: 8%, VR3: 12%)

o We compare the performance of our model to state-of-the-art

14

Model Evaluation & Acceleration

Styliani Tompazi/QUB

• Introduction & Motivation

• Proposed approach & Workflow

• Experimental results

• Potential use cases

• Conclusions

15

Outline

Styliani Tompazi/QUB

o Application on the mor1kx marocchino pipeline

o Floating point instructions are more susceptible to timing errors

o Floating point operations are dominant in various apps

16

Application to an open-source CPU

Styliani Tompazi/QUB

18

Experimental Results

Styliani Tompazi/QUB

SOTA

o 1M samples per VR level

o Error ratio: 0.5%, 1% and 1.5% (under VR1, VR2, VR3
respectively)

oRepresents the state-of-the-art-approach (Random
Forest)

Proposed_NN

o Training data include the synthetically generated samples

oUpdated error ratio: 10.5%, 11%, 11.5% (under VR1, VR2,
VR3 respectively)

o This approach utilizes exactly the same model and
hyperparameters with the state-of-the-art

19

Experimental Results

Styliani Tompazi/QUB

20

Experimental Results

Styliani Tompazi/QUB

• Introduction & Motivation

• Proposed approach & Workflow

• Experimental results

• Potential use cases

• Conclusions

21

Outline

Styliani Tompazi/QUB

o The GA-based generated error-prone ISQs can improve the predictive performance of AI-

based timing error models.

o The developed models can be leveraged to assess the vulnerability of applications to

fault injection (FI) attacks.

o The models can assist in early design evaluation, or enable timing error prevention at

runtime.

22

Use Case: Identifying Attack-prone Code Regions

Styliani Tompazi/QUB

o We examine the vulnerability of applications to attacks by measuring the significance-

aware code vulnerability factor (SCVF), defined as follows:

𝑆𝐶𝑉𝐹 =
1

#𝐼𝑆𝑄𝑠
⋅ ෍

𝑛=0

#𝐼𝑆𝑄𝑠

෍

𝑖=0

𝐾
𝐶𝑖 ⋅ 2𝑖

2𝐾 − 1

23

Use Case: Identifying Attack-prone Code Regions

Styliani Tompazi/QUB

VR1 VR2 VR3

CG +27.4% +103.2% +115.2%

GAUSS +2.64% +12.96% +8.37%

HOTSPOT 0% +1.44% +36%

IS +0.61% +52.53% +44.18%

SOBEL +3.25% +3.86% +5.68%

SRAD +17.98% +20.63% +4.27%

• Introduction & Motivation

• Proposed approach & Workflow

• Experimental results

• Potential use cases

• Conclusions

24

Outline

Styliani Tompazi/QUB

o Improve microarchitecture and workload-aware NN-based timing error modelling

through synthetic data generation.

o Up to 115.2% higher TPR than the state-of-the-art

o Average TPR increase by 8.65%, 32.44% and 35.62% (under VR1, VR2 and VR3

respectively)

o Improved timing error prediction can assist in reliability evaluation and security threat

detection

25

Conclusions

Styliani Tompazi/QUB

Thank you!

Styliani Tompazi/QUB 26

	Slide 1: AI-based Timing Error Modelling: A Case Study on a Pipelined Floating-Point Core bold cap S bold t bold y bold l bold i. bold a. bold n bold i. , bold cap T bold o bold m bold p bold a. bold z bold i. ,, bold cap I. bold o bold a. bold n bold
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Thank you!

