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Introduction

Goal: Tight (optimal or near optimal) error bounds in ulps for many
usual functions:

x ∗ pi, ln(2)/x, x/(y+ z), (x+ y) ∗ z, x/sqrt(y),
sqrt(x)/y, (x+ y)(z+ t), (x+ y)/(z+ t), (x+ y)/(zt),
(ax+ b)/(cy+ d), (x ∗ y)/sqrt(z), etc.

Context:

▶ radix-2, precision-p floating-point arithmetic, assuming round to
nearest (any tie-breaking rule in the proofs, ties-to-even in the
examples);

→ a FP number is zero or a number of the form x = Mx · 2ex−p+1,
where Mx , ex ∈ Z, with 2p−1 ⩽ |Mx | ⩽ 2p − 1 (we assume no
underflow or overflow);

▶ rounding function RN:

program line z = x + y ⇒ obtained result z = RN(x + y).
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Link between all these functions?

x ∗ pi, ln(2)/x, x/(y+ z), (x+ y) ∗ z, x/sqrt(y),
sqrt(x)/y, (x+ y)(z+ t), (x+ y)/(z+ t), (x+ y)/(zt),
(ax+ b)/(cy+ d), (x ∗ y)/sqrt(z), etc.

They are of the form

x · c , x/c , c/x , m · n, or n/d ,

where

▶ x is a FPnumber, and

▶ c , n, m and d are either real constants or correctly-rounded
functions of one or more variables.

Examples: c = π, or c =
√
y where y is a FP number and

√
y is

obtained through the (correctly rounded) sqrt instruction, or c = y + z
obtained through FPADD.
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Just an example

▶ program line

t = (x ∗ y)/sqrt(z)

▶ real function
t =

x · y√
z

▶ computed result

t̂ = RN

(
RN(x · y)
RN
(√

z
) )

We show that: ∣∣t − t̂
∣∣ ⩽ 5

2
ulp(t).

Very tight: 2.4994 ulp(t) attained in binary64 arithmetic.
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Error in ulps vs. relative error

▶ numerical errors usually expressed as error in ulps or as relative
errors.

▶ ulp(t) (unit in the last place of t) is 2⌊log2 |t|⌋−p+1,

▶ if t ̸= 0 is the exact result and t̂ is the computed approximation:

▶ the relative error is ∣∣∣∣ t − t̂

t

∣∣∣∣ ,
▶ the error in ulps is ∣∣∣∣ t − t̂

ulp(t)

∣∣∣∣ .

5/18



Error in ulps vs. relative error

▶ ulps preferred for “atomic” calculations (they convey more
information: correct rounding almost equivalent to error ⩽ 0.5 ulp);

▶ relative errors easier to manipulate for “large” calculations (e.g.
from relative error on f and g , obtaining relative error on f × g is
straightforward);

▶ easy conversion between both but at the cost of information loss:

▶ define u = 2−p (unit roundoff);
▶ we approximate an exact result t by a computed result t̂:

error ⩽ α ulp(t)
⇒ relative error ⩽ 2αu

⇒ error ⩽ 2α ulp(t).
→ we have lost a factor 2 in the round trip conversion.
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The FP numbers between 1/2 and 8 in the toy system p = 3

1
2 1

2u

2
x

RN(x)

ulp(x) = 4u

4

y

RN(y)
(assuming ties-to-even)

8
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Multiplication of a FP number by a constant or a
correctly-rounded function

Error bound in ulps on the computation of x · c , where

▶ x is a FP number (assumed exact!) , and

▶ c is a real constant or a correctly-rounded function (can be
√
y , π,

y + z , y · z , etc.).

We want to bound the error of approximating x · c by

RN (x · ĉ) ,

where ĉ = RN(c). Here, we consider “general” bounds, applicable to any
c .
[In the TETC paper we also try to improve these bounds in the particular case where c is a constant.]
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Multiplication of a FP number by a constant or a
correctly-rounded function

Property 1
Barring underflow and overflow, the FP number s = RN(ĉ · x) satisfies

|s − cx | ⩽
(

3
2
− u

)
· ulp (cx) < 3

2
ulp (cx).

In the general case (arbitrary constant c) the bound is asymptotically
optimal. Shown with the following generic example (assuming RN breaks
ties to even):
If p is even, choose

x = 2p − 2p/2,
c = 1 + 2−p/2−1 − 2−p,

If p is odd, choose

x = 2p − 2(p−1)/2,
c = 1 + 2−(p+1)/2 − 2−p.

9/18



Some examples

▶ previous example: c can be expressed as sum of two FPNs
→ asymptotic optimality of the bound 1.5 ulp of Property 1 for the
calculation of z ∗ (x+ y);

▶ errors
1.499756 · · · ulp(cx) (binary32 arithmetic),
1.499999992549 · · · ulp(cx) (binary64 arithmetic)
1.499999999999999993061 · · · ulp(cx) (binary128 arithmetic)

can be attained when calculating z ∗ (x ∗ y), showing that for that
function, the bound is very tight;

▶ in binary64 arithmetic, with x = 9007197761440759 and
y = 4503599630388691/252 error when computing x

√
y is

1.4991 ulp(x
√
y).
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Division of a FP number by a correctly-rounded function

We approximate x/c , where x is aFP number and c is either a real
constant or a real function of one or more FP variables, by

s = RN(x/ĉ),

where, as previously, ĉ = RN(c).

Property 2
Barring underflow and overflow, the FP number s = RN(x/ĉ) satisfies∣∣∣s − x

c

∣∣∣ ⩽ (3
2
− 2u

1 + 2u

)
ulp
(x
c

)
⩽

(
3
2
− 2u + 4u2

)
ulp
(x
c

)
<

3
2
ulp
(x
c

)
.

As for the product, “generic” example for a general constant c that shows
asymptotic optimality.
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Tightness?

▶ asymptotic optimality of the bound 1.5 ulp for the calculation of
z/(x+ y).

▶ errors
1.49957 · · · ulp(x/c) (binary32),
1.49999998137 · · · ulp(x/c) (binary64),
1.49999999999999998265 · · · ulp(x/c) (binary128)

can be

attained when calculating z/(x ∗ y), showing that for that function,
the bound is very tight;

▶ binary64 arithmetic, error 1.49906 ulp(x/
√
y) attained for

x = 9007198105271337 and y = 4503599631275935/252 when
calculating x/

√
y .
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Dividing a correctly-rounded function by a FP number

Now we consider approximating c/x , where x is a FP number and c is
either a real constant or a real function of one or more FP variables, by

s = RN(ĉ/x),

where, as previously, ĉ = RN(c).

Property 3
Barring underflow and overflow, the FP number s = RN(ĉ/x) satisfies∣∣∣s − c

x

∣∣∣ ⩽ 3 + 2u
2 + 4u

· ulp
(c
x

)
⩽

(
3
2
− 2u + 4u2

)
ulp
(c
x

)
.

Similar examples of asymptotic optimality or tightness. Covers functions
such as ln(2)/x ,

√
x/y , (x + y)/z , . . .
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Product of two correctly-rounded functions

Approximation of m · n, where m and n are either real constants or
correctly-rounded functions, by

s = RN (m̂ · n̂) ,

where m̂ = RN(m) and n̂ = RN(n) (of course nobody multiplies 2
constants)

Property 4
Barring underflow and overflow, the FP number s = RN(m̂ · m̂) satisfies

|s −mn| ⩽
(

5
2
+

u

2

)
ulp (mn) .

In the general case, the bound is asymptotically optimal for even values
of p (it probably is for odd values too but no proof).
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Tightness and examples of application

▶ error 2.4999982 ulp(efgh) is attained when computing
(e ∗ f) ∗ (g ∗ h) in binary64/double-precision arithmetic,

▶ the property applies to calculations such as π ·
√
x , (x + y) · (z + t),

(x · y) ·
√
z , ex cos(y) (with correctly rounded functions), etc. If an

FMA instruction is available, it also covers computations of the
form

(ax + b)(cy + d),

where a, b, c , d , x , and y are FP numbers.
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Quotient of two correctly-rounded functions

Approximation of n/d , where n and d are either real constants or
correctly-rounded functions, by

s = RN

(
n̂

d̂

)
,

where n̂ = RN(n) and d̂ = RN(d).

Property 5
Barring underflow and overflow, the floating-point number s = RN(n̂/d̂)
satisfies ∣∣∣s − n

d

∣∣∣ ⩽ 5
2
ulp
( n
d

)
.

covers calculations such as π/
√
x , (x + y)/(z + t), (xy)/(z + t), etc. If

an FMA instruction is available, it also covers computations of the form

ax + b

cy + d
,

where a, b, c , d , x , and y are FP numbers.
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Tightness?

▶ binary64, error 2.49999997392 · · · ulp attained when computing
(x + y)/(z + t) , (xy)/(z + t); (x + y)/(zt), and (xy)/(zt) with
well chosen values (see TETC paper);

▶ binary64, error 2.4994 ulp attained when computing

x + y√
z

or
xy√
z
,

with well chosen values.
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Conclusion

▶ sharp error bounds in ulps for computations in binary FP arithmetic
of the form x · c , x/c , c/x , m · n and n/d , where x is a FP number
and c , n, m and d are either real constants or correctly-rounded
functions of one or more variables;

▶ examples of functions for which our work gives tight bounds are

x ∗ pi, ln(2)/x, x/(y+ z), (x+ y) ∗ z, x/sqrt(y), sqrt(x)/y,
(x+ y) ∗ (z+ t), (x+ y)/(z+ t), (x+ y)/(zt),

(ax+ b)/(cy+ d), (x ∗ y) ∗ sqrt(z), etc.

▶ In several cases, we have been able to show that our bounds are
asymptotically optimal.

Thank you!
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