Error in ulps of the multiplication or division by a correctly-rounded function or constant in binary floating-point arithmetic

N. Brisebarre J.-M. Muller J. Picot
CNRS and ENS de Lyon, Laboratoire LIP
Lyon, France

30th IEEE Symposium on Computer Arithmetic Portland, OR, September 2023

Cinvía

三玉

Introduction

Goal: Tight (optimal or near optimal) error bounds in ulps for many usual functions:

$$
\begin{aligned}
& x * \operatorname{pi}, \quad \ln (2) / x, \quad x /(y+z), \quad(x+y) * z, \quad x / \operatorname{sqrt}(y), \\
& \operatorname{sqrt}(x) / y, \quad(x+y)(z+t), \quad(x+y) /(z+t), \quad(x+y) /(z t) \\
& (\operatorname{ax}+b) /(\operatorname{cy}+d), \quad(x * y) / \operatorname{sqrt}(z), \quad \text { etc. }
\end{aligned}
$$

Context:

- radix-2, precision- p floating-point arithmetic, assuming round to nearest (any tie-breaking rule in the proofs, ties-to-even in the examples);
\rightarrow a FP number is zero or a number of the form $x=M_{x} \cdot 2^{e_{x}-p+1}$, where $M_{x}, e_{x} \in \mathbb{Z}$, with $2^{p-1} \leqslant\left|M_{x}\right| \leqslant 2^{p}-1$ (we assume no underflow or overflow);
- rounding function RN:

$$
\text { program line } z=x+y \Rightarrow \text { obtained result } z=\mathrm{RN}(x+y)
$$

Link between all these functions?

$$
\begin{aligned}
& x * p i, \quad \ln (2) / x, \quad x /(y+z), \quad(x+y) * z, \quad x / \operatorname{sqrt}(y) \\
& \operatorname{sqrt}(x) / y, \quad(x+y)(z+t), \quad(x+y) /(z+t), \quad(x+y) /(z t) \\
& (a x+b) /(\operatorname{cy}+d),(x * y) / \operatorname{sqrt}(z), \quad \text { etc. }
\end{aligned}
$$

They are of the form

$$
x \cdot c, \quad x / c, \quad c / x, \quad m \cdot n, \quad \text { or } n / d
$$

where

- x is a FPnumber, and
$-c, n, m$ and d are either real constants or correctly-rounded functions of one or more variables.

Examples: $c=\pi$, or $c=\sqrt{y}$ where y is a FP number and \sqrt{y} is obtained through the (correctly rounded) sqrt instruction, or $c=y+z$ obtained through FPADD.

Just an example

- program line

$$
\mathrm{t}=(\mathrm{x} * \mathrm{y}) / \operatorname{sqrt}(\mathrm{z})
$$

- real function

$$
t=\frac{x \cdot y}{\sqrt{z}}
$$

- computed result

$$
\hat{t}=\operatorname{RN}\left(\frac{\operatorname{RN}(x \cdot y)}{\operatorname{RN}(\sqrt{z})}\right)
$$

We show that:

$$
|t-\hat{t}| \leqslant \frac{5}{2} \mathrm{ulp}(t)
$$

Very tight: $2.4994 \mathrm{ulp}(t)$ attained in binary64 arithmetic.

Error in ulps vs. relative error

- numerical errors usually expressed as error in ulps or as relative errors.
- ulp (t) (unit in the last place of t) is $2^{\left\lfloor\log _{2}|t|\right\rfloor-p+1}$,
- if $t \neq 0$ is the exact result and \hat{t} is the computed approximation:
- the relative error is

$$
\left|\frac{t-\hat{t}}{t}\right|
$$

- the error in ulps is

$$
\left|\frac{t-\hat{t}}{\operatorname{ulp}(t)}\right|
$$

Error in ulps vs. relative error

- ulps preferred for "atomic" calculations (they convey more information: correct rounding almost equivalent to error $\leqslant 0.5$ ulp);
- relative errors easier to manipulate for "large" calculations (e.g. from relative error on f and g, obtaining relative error on $f \times g$ is straightforward);
- easy conversion between both but at the cost of information loss:
- define $u=2^{-p}$ (unit roundoff);
- we approximate an exact result t by a computed result \hat{t} :

$$
\text { error } \leqslant \alpha u \operatorname{lp}(t) \quad \Rightarrow \text { relative error } \leqslant 2 \alpha u
$$

$$
\Rightarrow \text { error } \leqslant 2 \alpha \mathrm{ulp}(t)
$$

\rightarrow we have lost a factor 2 in the round trip conversion.

The FP numbers between $1 / 2$ and 8 in the toy system $p=3$

Multiplication of a FP number by a constant or a correctly-rounded function

Error bound in ulps on the computation of $x \cdot c$, where

- x is a FP number (assumed exact!), and
- c is a real constant or a correctly-rounded function (can be \sqrt{y}, π, $y+z, y \cdot z$, etc.).
We want to bound the error of approximating $x \cdot c$ by

$$
\operatorname{RN}(x \cdot \hat{c}),
$$

where $\hat{c}=\operatorname{RN}(c)$. Here, we consider "general" bounds, applicable to any C.
[In the TETC paper we also try to improve these bounds in the particular case where c is a constant.]

Multiplication of a FP number by a constant or a

 correctly-rounded function
Property 1

Barring underflow and overflow, the FP number $s=\operatorname{RN}(\hat{c} \cdot x)$ satisfies

$$
|s-c x| \leqslant\left(\frac{3}{2}-u\right) \cdot u \operatorname{lp}(c x)<\frac{3}{2} u \operatorname{lp}(c x) .
$$

In the general case (arbitrary constant c) the bound is asymptotically optimal. Shown with the following generic example (assuming RN breaks ties to even):
If p is even, choose

$$
\begin{aligned}
& x=2^{p}-2^{p / 2} \\
& c=1+2^{-p / 2-1}-2^{-p},
\end{aligned}
$$

If p is odd, choose

$$
\begin{aligned}
& x=2^{p}-2^{(p-1) / 2} \\
& c=1+2^{-(p+1) / 2}-2^{-p}
\end{aligned}
$$

Some examples

- previous example: c can be expressed as sum of two FPNs \rightarrow asymptotic optimality of the bound 1.5 ulp of Property 1 for the calculation of $\mathrm{z} *(\mathrm{x}+\mathrm{y})$;
- errors

$$
\begin{array}{ll}
1.499756 \cdots \mathrm{ulp}(c x) & \text { (binary32 arithmetic), } \\
1.499999992549 \cdots \mathrm{ulp}(c x) & \text { (binary64 arithmetic) } \\
1.499999999999999993061 \cdots \mathrm{ulp}(c x) & \text { (binary128 arithmetic) }
\end{array}
$$

can be attained when calculating $\mathrm{z} *(\mathrm{x} * \mathrm{y})$, showing that for that function, the bound is very tight;

- in binary64 arithmetic, with $x=9007197761440759$ and $y=4503599630388691 / 2^{52}$ error when computing $x \sqrt{y}$ is $1.4991 \mathrm{ulp}(x \sqrt{y})$.

Division of a FP number by a correctly-rounded function

We approximate x / c, where x is aFP number and c is either a real constant or a real function of one or more FP variables, by

$$
s=\operatorname{RN}(x / \hat{c})
$$

where, as previously, $\hat{c}=\mathrm{RN}(c)$.
Property 2
Barring underflow and overflow, the FP number $s=\mathrm{RN}(x / \hat{c})$ satisfies

$$
\begin{aligned}
\left|s-\frac{x}{c}\right| & \leqslant\left(\frac{3}{2}-\frac{2 u}{1+2 u}\right) \text { ulp }\left(\frac{x}{c}\right) \\
& \leqslant\left(\frac{3}{2}-2 u+4 u^{2}\right) \text { ulp }\left(\frac{x}{c}\right) \\
& <\frac{3}{2} \text { ulp }\left(\frac{x}{c}\right) .
\end{aligned}
$$

As for the product, "generic" example for a general constant c that shows asymptotic optimality.

Tightness?

- asymptotic optimality of the bound 1.5 ulp for the calculation of $\mathrm{z} /(\mathrm{x}+\mathrm{y})$.
- errors
$1.49957 \cdots u l p(x / c)$
$1.49999998137 \cdots$ ulp (x / c)
$1.49999999999999998265 \cdots u l p(x / c) \quad$ (binary128) attained when calculating $\mathrm{z} /(\mathrm{x} * \mathrm{y})$, showing that for that function, the bound is very tight;
- binary64 arithmetic, error $1.49906 \mathrm{ulp}(x / \sqrt{y})$ attained for $x=9007198105271337$ and $y=4503599631275935 / 2^{52}$ when calculating x / \sqrt{y}.

Dividing a correctly-rounded function by a FP number

Now we consider approximating c / x, where x is a FP number and c is either a real constant or a real function of one or more FP variables, by

$$
s=\operatorname{RN}(\hat{c} / x),
$$

where, as previously, $\hat{c}=\mathrm{RN}(c)$.
Property 3
Barring underflow and overflow, the FP number $s=\operatorname{RN}(\hat{c} / x)$ satisfies

$$
\begin{aligned}
\left|s-\frac{c}{x}\right| & \leqslant \frac{3+2 u}{2+4 u} \cdot \text { ulp }\left(\frac{c}{x}\right) \\
& \leqslant\left(\frac{3}{2}-2 u+4 u^{2}\right) \text { ulp }\left(\frac{c}{x}\right) .
\end{aligned}
$$

Similar examples of asymptotic optimality or tightness. Covers functions such as $\ln (2) / x, \sqrt{x} / y,(x+y) / z, \ldots$

Product of two correctly-rounded functions

Approximation of $m \cdot n$, where m and n are either real constants or correctly-rounded functions, by

$$
s=\operatorname{RN}(\hat{m} \cdot \hat{n}),
$$

where $\hat{m}=\mathrm{RN}(m)$ and $\hat{n}=\mathrm{RN}(n)$ (of course nobody multiplies 2 constants)
Property 4
Barring underflow and overflow, the FP number $s=\mathrm{RN}(\hat{m} \cdot \hat{m})$ satisfies

$$
|s-m n| \leqslant\left(\frac{5}{2}+\frac{u}{2}\right) \text { ulp }(m n) .
$$

In the general case, the bound is asymptotically optimal for even values of p (it probably is for odd values too but no proof).

Tightness and examples of application

- error $2.4999982 \mathrm{ulp}(e f g h)$ is attained when computing $(\mathrm{e} * \mathrm{f}) *(\mathrm{~g} * \mathrm{~h})$ in binary64/double-precision arithmetic,
- the property applies to calculations such as $\pi \cdot \sqrt{x},(x+y) \cdot(z+t)$, $(x \cdot y) \cdot \sqrt{z}, e^{x} \cos (y)$ (with correctly rounded functions), etc. If an FMA instruction is available, it also covers computations of the form

$$
(a x+b)(c y+d)
$$

where a, b, c, d, x, and y are FP numbers.

Quotient of two correctly-rounded functions

Approximation of n / d, where n and d are either real constants or correctly-rounded functions, by

$$
s=\operatorname{RN}\left(\frac{\hat{n}}{\hat{d}}\right),
$$

where $\hat{n}=\operatorname{RN}(n)$ and $\hat{d}=\operatorname{RN}(d)$.
Property 5
Barring underflow and overflow, the floating-point number $s=\operatorname{RN}(\hat{n} / \hat{d})$ satisfies

$$
\left|s-\frac{n}{d}\right| \leqslant \frac{5}{2} \text { ulp }\left(\frac{n}{d}\right) .
$$

covers calculations such as $\pi / \sqrt{x},(x+y) /(z+t),(x y) /(z+t)$, etc. If an FMA instruction is available, it also covers computations of the form

$$
\frac{a x+b}{c y+d}
$$

where a, b, c, d, x, and y are FP numbers.

Tightness?

- binary64, error $2.49999997392 \cdots$ ulp attained when computing $(x+y) /(z+t),(x y) /(z+t) ;(x+y) /(z t)$, and $(x y) /(z t)$ with well chosen values (see TETC paper);
- binary64, error 2.4994 ulp attained when computing

$$
\frac{x+y}{\sqrt{z}}
$$

or

$$
\frac{x y}{\sqrt{z}}
$$

with well chosen values.

Conclusion

- sharp error bounds in ulps for computations in binary FP arithmetic of the form $x \cdot c, x / c, c / x, m \cdot n$ and n / d, where x is a FP number and c, n, m and d are either real constants or correctly-rounded functions of one or more variables;
- examples of functions for which our work gives tight bounds are

$$
\begin{gathered}
\mathrm{x} * \mathrm{pi}, \ln (2) / \mathrm{x}, \mathrm{x} /(\mathrm{y}+\mathrm{z}),(\mathrm{x}+\mathrm{y}) * \mathrm{z}, \mathrm{x} / \operatorname{sqrt}(\mathrm{y}), \operatorname{sqrt}(\mathrm{x}) / \mathrm{y}, \\
(\mathrm{x}+\mathrm{y}) *(\mathrm{z}+\mathrm{t}),(\mathrm{x}+\mathrm{y}) /(\mathrm{z}+\mathrm{t}),(\mathrm{x}+\mathrm{y}) /(\mathrm{zt}), \\
(\mathrm{ax}+\mathrm{b}) /(\mathrm{cy}+\mathrm{d}),(\mathrm{x} * \mathrm{y}) * \operatorname{sqrt}(\mathrm{z}), \text { etc. }
\end{gathered}
$$

- In several cases, we have been able to show that our bounds are asymptotically optimal.

Thank you!

