Chromatic Analysis of Numerical Program

David DEFOUR, LAMPS, Univ. of Perpignan

Franck Vedrine, Univ. Paris-Saclay CEA List

A few word about colors.... In RGB

Colors naturally provides visual information under additive property

Introduction

- Assessment
 - For some applications (DNN), we are more concerned by understanding the resulting value than by the propagation of errors
- Objective
 - Estimate the relations between input and output variables under additive property
- Solution
 - Use the concept of chromatic number to tint scalar or set of scalars
 - Each scalar is decomposed as the sum of tinted values

Chromatic number: Definition

- A **Chromatic Number** consists in associating a color to scalar or set of scalar in order to track them during computation
 - Corresponds to a triplet $\langle x, k_x, V_x \rangle$
 - *x* is the floating-point number
 - V_x is a vector of n floating-point numbers representing the weight of the n tints within x such that we have Additive property

•
$$x = \frac{1}{k_x} \sum_{i=0}^n V_x[i]$$

- Properties
 - V_{χ} Corresponds to a component-wise decomposition of numerical values
 - Multiple scalars can be set with the same tint (track multiple values at the same time and helps to reduce the dimensionality of the problem)
 - Need to set a "Garbage element" in V_{χ} to collect contributions of non-chromatic numbers to preserve additive property.

(Optional element if every computation were done without rounding error ($x = \sum_{i=0}^{n} V_x[i]$))

Chromatic number: Operations

- Set a new arithmetic on chromatic numbers:
 - $< x, k_x, V_x > + < y, k_y, V_y > = < x + y, 1, \frac{V_x}{k_y} + \frac{V_y}{k_y} >$ • Addition:
 - $< x, k_x, V_x > < y, k_y, V_y > = < x y, 1, \frac{V_x}{k_y} \frac{V_y}{k_y} >$ • Subtraction:

 $\sqrt{\langle x, k_x, V_x \rangle} = \langle \sqrt{x}, 1, \frac{V_x}{k_x \sqrt{x}} \rangle$

- Multiplication: $\langle x, k_x, V_x \rangle = \langle y, k_v, V_v \rangle = \langle x, y, k_x + k_v, y, V_x + x, V_v \rangle$ $\frac{\langle x, k_x, V_x \rangle}{\langle y, k_y, V_y \rangle} = \langle \frac{x}{y}, \frac{\frac{x}{V_y} + \frac{V_x}{y}}{2} \rangle = \langle \frac{x}{y}, k_x + k_y, \frac{x}{v^2}, V_y + \frac{V_x}{v} \rangle$
- Division:

• Sqrt(x):

• Any functions: $f(\langle x, k_x, V_x \rangle, \langle y, k_y, V_y \rangle) = \langle f(x+y), k_x + k_y, \frac{f(x, V_y) + f(V_x, y)}{2} \rangle$

Example 1: Cancellation

- Let consider the sequence of operations
 - *a* = 2
 - *b* = 3
 - r = (a.a).b 12
- In CA this corresponds to
 - a = <2, 1, [0,2,0] > b = <3, 1, [0,0,3] >
 - (a, a) = <4, 2, [0, 8, 0] > Garbage element
 - (a. a). b =< 12, 3, [0,24,12] >
 (a. a). b 12 =< 0, 1, [-12, 8, 4] >

Example 2: LP Digital Filter

- Goal:
 - Understand how output results are affected by input data, program parameters, etc over time
 - Relative weight in the output value of the input values

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

Create a low-pass Butterworth filter def butter_lowpass(cutoff, fs, order=5): nyquist = 0.5 * fs normal_cutoff = cutoff / nyquist b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a

Apply the filter to the input signal def butter_lowpass_filter(data, cutoff, fs, order=5): b, a = butter_lowpass(cutoff, fs, order=order) y = lfilter(b, a, data) return y

Example usage

Filter parameters order = 6

cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)

7/13

Example 3: Muller's series

$$\begin{cases} u_0 = 5.5\\ u_1 = 61.0/11.0\\ u_{n+1} = 111. - 1130./u_n + 3000./(u_n.u_{n-1}) \end{cases}$$

- Goal:
 - Give a fine interpretation of what is numerically happening in some pathologicals cases

Related works

1. Sensitivity analysis

- Evaluate how variations in input parameters affect the output
- Identify which input parameters have the greatest effect on the output
- Issues:
 - Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on multiple input

2. Automatic Differentiation

- Compute the gradient at each step
- Forward or backward according to the input/output dimensionality
- Implementation:
 - Each number X is replaced by a Dual Number $\langle x | x' \rangle$ where x' is the derivative such that $X = x + x' \varepsilon$ with ε an abstract number such that $\varepsilon^2 = 0$.
- Problematic with complex multivariate program as untracked variables are not taken into account (Solution: rely on automated sparsity detection of the Jacobian matrix)

Graphical illustration of CA vs AD

Relative weight of x (red) and y (blue) in f(x,y)

Experiments: inference in DNN MNIST

Possible usage: adversarial attack to alter output probability
classification by minimizing the number of modified pixel
Execution overhead: x100 on time, x20 on memory

P0=0.001	<0.0,-0.010,0.020,,0.0>
P1=0.001	<0.0,0.120,0.085,,0.0>
P2=0.003	<0.0,0.037,-0.008,,0.0>
P3=0.005	<0.0,-0.062,-0.011,,0.0>
P4=0.005	<0.0,0.074,0.001,,0.0>
P5=0.020	
P6=0.010	
P7=0.950	
P8=0.002	<0.0,0.003,-0.007,,0.0>
P9=0.003	<0.0,-0.003,-0.008,,0.0>

Output probability + Pixel-wise decomposition (784+1 elements)

```
73773737777373773737737377
      33377 77773333377
       3733 3337
3337
                    73733
         377
               7
                        33
          33
             33
              37
                         33
                         33
         3
          37
              2
                 3
          3
                        33
       3737 397
3
```

Experiments: Training DNN MNIST

• Goal

- Track the weight of image class during learning phase
- Understand the network's numerical behavior
- Methodology
 - Tint according to its image classification (0 to 9)
 - Each of the 84k coefficients are decomposed according to image classification
- Ouput
 - Resulting network made of coefficient decomposed as chromatic numbers tinted according to the input images class
- Overhead
 - x1800 time (not possible to use optimized BLASS)
 - x12 on memory

For an image: each pixel = same index

Conclusion

- Chromatic analysis
 - Additive decomposition of results according to tinted values/set of values
 - Allows fusion of data to limit the dimensionality problem encountered with other analysis
 - Help's understand what is important among input values, constant, scalar and their numerical relation (ex: cancellations)
 - Preserve the input data structures
- Future works
 - Thanks to the additive property, it is possible to combine this analyse with an iterative refinement algorithm to reduce the memory overhead
 - Start with a few sets of tracked values (low memory / low computational overhead),
 - Restart the analyses by splitting only sets of variables which are having a large impact
 - Combine chromatic analysis with others to reduce the cost of global sensitivity analysis
 - Will help focusing on variables of interest.
 - Investigate various tinting mechanism
 - According to data type, time, location (functions, MPI Process...)
 - Test on real life program (numerically instruct abnormality)

Example: Error Free Transformation

(s , t) = Fast2Sum(a , b) // a>>b s = a + b r = s - a t = b - r

a = <a , 1 , [0 , a , 0]> b = <b , 1 , [0 , 0 , b]>

s = <a , 1 , [0 , a , b]> r = <0 , 1 , [0 , 0 , b]> t = <b , 1 , [0 , 0 , 0]>

 $0 \neq 0 + 0 + b$ Does not take into account rounding error

Example: Error Free Transformation

- (s , t) = Fast2Sum(a , b) // a>>b s = a + b r = s - a t = b - r
- a = <a , 1 , [0 , a , 0]> b = <b , 1 , [0 , 0 , b]>

s = <a , 1 , [0 , a , b]> r = <0 , 1 , [0 , 0 , b]> t = <b , 1 , [0 , 0 , 0]>

0 ≠ 0 + 0 + b Does not take into account rounding error => Include a rounding error term => Dedicated routines for EFT a = <a , 1 , [0 , 0 , a , 0]> b = <b , 1 , [0 , 0 , 0 , b]>

s = <a , 1 , [0 , -b , a , b]> r = <0 , 1 , [0 , -b , 0 , b]> t = <b , 1 , [0 , b , 0 , 0]>

Chromatic number: Implementation

- Space and time complexity grows linearly with the number of tinted values.
 - Example: A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of intermediate representation.
 - C++/Python implementation with V_x stored either as a dense/sparse structure (vector/dictionary)
- Optimization: Fusion of small contributions
 - Discard tinted element which are becoming too small compared to others and accumulate them in the garbage element ($\begin{vmatrix} V_x[i] \\ V_x[i] \end{vmatrix} \ge C$ with C a tunable parameter typically set to 2^{53} for double precision). Particularly useful when used when V_x is a dictionary structure.
- Optimization: Error element
 - Set an element to track rounding errors performed on x in $\langle x | V_x \rangle$
 - Accumulate rounding error similarly to compensated algorithm (use of EFT & extended precision)

Chromatic number: Implementation

- Optimization: Refinement algorithm
 - Start the chromatic analysis by aggregating the maximum number of value under the same tint in order to minimize the size of V_x .
 - Detect which tint account for the most and restart the computation by subdividing the selected tint, while detecting under-approximation (cancellation within a tint)

```
Algorithm 1 Contribution refinement subdivision algorithm
Require: O = func(I) the function to analyse
Require: I the set of scalar to track
Require: card(I) = N, and O = \langle o, V_o \rangle
                                                ▷ Initial Spliting
  I' = split(I)
  do
      O'=func(I')
      S =False
      for i in I' do
          if |o'| > k_0 |V_{o'}[1]| and |V_{o'}[i+2]| > k_1 |V_{o'}[1]| and
              card(I'[i]) > 1 then
              I'=split(I'[i])
              S = True
          end if
      end for
  while S
```

Experiment : Sparse solver

- Matrix from MatrixMarket:
 - BCSSTK13: size 2003 x 2003; 42943 entries; estimated conditioned number 4.6 1010
 - BCSSTK14: size 1806 x 1806; 32630 entries; estimated conditioned number 1.3 1010
- Execution time in sec. and memory to solve BCSSTK14 between Python and C++ version.
 - 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of the system)
 - Memory usage grows linearly => x500-1000 on memory for 1000 tinted values

Number of	no-instr	1	16	32
tinted value				
followed				
Python	250s /70Mo	1634s	2022s	2500s
		/108Mo	/125Mo	/156Mo
C++	0.13s /21Mo	1.3s	40s	92s
		/26Mo	/135Mo	/253Mo

Experiment N°3: Sparse solver

- Iterative refinement algorithm , starting with a 4x4 subdivision according to the index in each direction of the matrix BCSSTK13.
- Stops after 5 iterations in 836 sec.

Reference

Analysis conduced while keeping the 128 most contributing tint in each cell. (2205 sec) => More time consuming and less precise than the iterative algorithm

"A picture is worth a thousand words"

```
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
# Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):
    nyquist = 0.5 * fs
    normal cutoff = cutoff / nyquist
    b, a = butter(order, normal cutoff, btype='low', analog=False)
    return b, a
# Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):
    b, a = butter_lowpass(cutoff, fs, order=order)
    y = lfilter(b, a, data)
    return y
# Example usage
# Generate some random input data
                 # Sample rate (Hz)
fs = 100.0
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)
# Filter parameters
order = 6
cutoff freg = 10.0 # Desired cutoff frequency (Hz)
# Apply the filter to the input data
```

filtered data = butter lowpass filter(data, cutoff freq, fs, order)

1.5 1.0 0.5 Amplitude 0.0 -0.5-1.0Input Filtered -1.50.0 0.2 0.4 0.6 0.8 10 Time [s]