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A few word about colors…. In RGB
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+ = PURPLE
(254,0,254)
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(254,254,0)

Colors naturally provides visual information under additive property 2/13



Introduction

• Assessment
• For some applications (DNN), we are more concerned by 

understanding the resulting value than by the propagation of 
errors

• Objective
• Estimate the relations between input and output variables 

under additive property

• Solution
• Use the concept of chromatic number to tint scalar or set of 

scalars
• Each scalar is decomposed as the sum of tinted values
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Chromatic number: Definition

• A Chromatic Number consists in associating a color to scalar or set of scalar in order to 
track them during computation

• Corresponds to a triplet 𝑥, 𝑘𝑥 , 𝑉𝑥
• 𝑥 is the floating-point number 

• 𝑉𝑥  is a vector of 𝑛 floating-point numbers representing the weight of the 𝑛 tints within 𝑥 such that we have 
Additive property

• 𝑥 =
1

𝑘𝑥
σ𝑖=0

𝑛 𝑉𝑥 𝑖

• Properties
• 𝑉𝑥 Corresponds to a component-wise decomposition of numerical values

• Multiple scalars can be set with the same tint 
(track multiple values at the same time and helps to reduce the dimensionality of the problem)

• Need to set a “Garbage element” in 𝑉𝑥  to collect contributions of non-chromatic numbers to 
preserve additive property. 
(Optional element if every computation were done without rounding error (𝑥 = σ𝑖=0

𝑛 𝑉𝑥[𝑖]) )
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Chromatic number: Operations

• Set a new arithmetic on chromatic numbers:

• Addition:  <  𝑥, 𝑘𝑥 , 𝑉𝑥 >  + < 𝑦, 𝑘𝑦 , 𝑉𝑦 > =  < 𝑥 + 𝑦 , 1,
𝑉𝑥

𝑘𝑥
+

𝑉𝑦

𝑘𝑦
> 

• Subtraction: <  𝑥, 𝑘𝑥 , 𝑉𝑥 >  − < 𝑦, 𝑘𝑦 , 𝑉𝑦 > =  < 𝑥 − 𝑦 , 1,
𝑉𝑥

𝑘𝑥
−

𝑉𝑦

𝑘𝑦
> 

• Multiplication: < 𝑥, 𝑘𝑥 , 𝑉𝑥 > . < 𝑦, 𝑘𝑦 , 𝑉𝑦 > =  < 𝑥. 𝑦 , 𝑘𝑥 + 𝑘𝑦 , 𝑦. 𝑉𝑥 + 𝑥. 𝑉𝑦 >

• Division: 
<𝑥,𝑘𝑥,𝑉𝑥>

<𝑦,𝑘𝑦,𝑉𝑦>
 = <

𝑥

𝑦
,

𝑥

𝑉𝑦
+

𝑉𝑥
𝑦

2
> = <

𝑥

𝑦
 , 𝑘𝑥 + 𝑘𝑦 ,

𝑥

𝑦2 . 𝑉𝑦  +
𝑉𝑥

𝑦
>

• Sqrt(x): < 𝑥, 𝑘𝑥 , 𝑉𝑥 >=  < 𝑥, 1,
𝑉𝑥

𝑘𝑥 𝑥
>

• Any functions: 𝑓 <  𝑥, 𝑘𝑥 , 𝑉𝑥 >, < 𝑦, 𝑘𝑦 , 𝑉𝑦 > =  < 𝑓 𝑥 + 𝑦 , 𝑘𝑥 + 𝑘𝑦 ,
𝑓 𝑥,𝑉𝑦 +𝑓 𝑉𝑥,𝑦

2
>
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Example 1: Cancellation

• Let consider the sequence of operations
• 𝑎 = 2
• 𝑏 = 3
• 𝑟 = 𝑎. 𝑎 . 𝑏 − 12

• In CA this corresponds to
• 𝑎 =< 2, 1, 0,2,0 >  b=< 3, 1, 0,0,3 > 

• (𝑎. 𝑎) =< 4, 2, 0,8,0 >
• (𝑎. 𝑎). 𝑏 =< 12, 3, 0,24,12 >
• (𝑎. 𝑎). 𝑏 − 12 =< 𝟎, 1, −12, 8, 4 >

Garbage element
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Example 2: LP Digital Filter
• Goal:

• Understand how output results are affected by input data, program 
parameters, etc over time

• Relative weight in the 
output value of the input values

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

# Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):

nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

# Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):

b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

# Example usage
# Generate some random input data
fs = 100.0 # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

# Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

# Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)
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Example 3: Muller’s series

• Goal:
• Give a fine interpretation of what is numerically happening in some pathologicals cases
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Related works

1. Sensitivity analysis
• Evaluate how variations in input parameters affect the output
• Identify which input parameters have the greatest effect on the output
• Issues: 

• Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on 
multiple input 

2. Automatic Differentiation
• Compute the gradient at each step
• Forward or backward according to the input/output dimensionality 
• Implementation: 

• Each number X is replaced by a Dual Number 𝑥 𝑥′  where x’ is the derivative such that 𝑋 =
𝑥 + 𝑥′𝜀 with 𝜀 an abstract number such that 𝜀2 = 0.

• Problematic with complex multivariate program as untracked variables are not 
taken into account 
(Solution: rely on automated sparsity detection of the Jacobian matrix)
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Graphical illustration of CA vs AD
𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2

Local steepness 
measure

Relative weight of x (red) 
and y (blue) in f(x,y) 

Chromatic analysis AD analysis 10/13



Experiments: inference in DNN MNIST

1 pixel = 1 index
784,100,50,10 Network

P0=0.001 <0.0,-0.010,0.020, ….,0.0>

P1=0.001 <0.0,0.120,0.085, ….,0.0>

P2=0.003 <0.0,0.037,-0.008, ….,0.0>

P3=0.005 <0.0,-0.062,-0.011, ….,0.0>

P4=0.005 <0.0,0.074,0.001, ….,0.0>

P5=0.020 …

P6=0.010

P7=0.950

P8=0.002 <0.0,0.003,-0.007, ….,0.0>

P9=0.003 <0.0,-0.003,-0.008, ….,0.0>

Output probability +
Pixel-wise decomposition 

(784+1 elements)

Possible usage: adversarial attack to alter output probability 
classification by minimizing the number of modified pixel

Execution overhead: x100 on time, x20 on memory 11/13



Experiments: Training DNN MNIST

• Goal
• Track the weight of image class during learning phase
• Understand the network’s numerical behavior

• Methodology
• Tint according to its image classification (0 to 9)
• Each of the 84k coefficients are decomposed according to image 

classification

• Ouput
• Resulting network made of coefficient decomposed as chromatic 

numbers tinted according to the input images class

• Overhead
• x1800 time (not possible to use optimized BLASS)
• x12 on memory

For an image: 
each pixel  = same index

12/13



Conclusion

• Chromatic analysis
• Additive decomposition of results according to tinted values/set of values
• Allows fusion of data to limit the dimensionality problem encountered with other 

analysis 
• Helps understand what is important among input values, constant, scalar and their 

numerical relation (ex: cancellations)
• Preserve the input data structures

• Future works
• Thanks to the additive property, it is possible to combine this analyse with an 

iterative refinement algorithm to reduce the memory overhead 
• Start with a few sets of tracked values (low memory / low computational overhead), 
• Restart the analyses by splitting only sets of variables which are having a large impact

• Combine chromatic analysis with others to reduce the cost of global sensitivity 
analysis

• Will help focusing on variables of interest. 
• Investigate various tinting mechanism

• According to data type, time, location (functions, MPI Process…)
• Test on real life program ( numerically instruct abnormality ) 13/13





Example: Error Free Transformation

(s , t) = Fast2Sum(a , b) // a>>b
s = a + b
r =  s – a
t = b – r  

a = <a , 1 , [0 , a , 0]>

b = <b , 1 , [0 , 0 , b]>

s = <a , 1 , [0 , a , b]>

r = <0 , 1 , [0 , 0 , b]>

t = <b , 1 , [0 , 0 , 0]>

0 ≠ 0 + 0 + 𝑏
Does not take into account 
rounding error



Example: Error Free Transformation

(s , t) = Fast2Sum(a , b) // a>>b
s = a + b
r =  s – a
t = b – r  

a = <a , 1 , [0 , a , 0]>

b = <b , 1 , [0 , 0 , b]>

s = <a , 1 , [0 , a , b]>

r = <0 , 1 , [0 , 0 , b]>

t = <b , 1 , [0 , 0 , 0]>

0 ≠ 0 + 0 + 𝑏
Does not take into account 
rounding error
=> Include a rounding error term
=> Dedicated routines for EFT   

a = <a , 1 , [0 , 0 , a , 0]>

b = <b , 1 , [0 , 0 , 0 , b]>

s = <a , 1 , [0 , -b , a , b]>

r = <0 , 1 , [0 , -b ,  0 , b]>

t = <b , 1 , [0 , b , 0 , 0]>



Chromatic number: Implementation

• Space and time complexity grows linearly with the number of tinted values.
• Example: A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of 

intermediate representation.
• C++/Python implementation with 𝑉𝑥 stored either as a dense/sparse structure 

(vector/dictionary)

• Optimization: Fusion of small contributions
• Discard tinted element which are becoming too small compared to others and 

accumulate them in the garbage element (
𝑉𝑥 𝑖

𝑉𝑥 𝑗
≥ 𝐶 with 𝐶 a tunable parameter 

typically set to 253 for double precision). Particularly useful when used when 𝑉𝑥 is a 
dictionary structure. 

• Optimization: Error element
• Set an element to track rounding errors performed on 𝑥 in 𝑥 𝑉𝑥
• Accumulate rounding error similarly to compensated algorithm (use of EFT & 

extended precision)



Chromatic number: Implementation

• Optimization: Refinement algorithm
• Start the chromatic analysis by 

aggregating the maximum number of 
value under the same tint in order to 
minimize the size of 𝑉𝑥 .

• Detect which tint account for the most 
and restart the computation by 
subdividing the selected tint, while 
detecting under-approximation 
(cancellation within a tint)



Experiment : Sparse solver

• Matrix from MatrixMarket:
• BCSSTK13: size 2003 x 2003; 42943 entries; estimated

conditioned number 4.6 1010
• BCSSTK14: size 1806 x 1806; 32630 entries; estimated

conditioned number 1.3 1010

• Execution time in sec. and memory to solve BCSSTK14 between 
Python and C++ version.

• 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of 
the system)

• Memory usage grows linearly => x500-1000 on memory for 1000 tinted 
values



Experiment N°3: Sparse solver

• Iterative refinement algorithm , starting with a 4x4 subdivision 
according to the index in each direction of the matrix BCSSTK13.

• Stops after 5 iterations in 836 sec.

Reference
Analysis conduced while keeping the 128 most 
contributing tint in each cell. (2205 sec)
=> More time consuming and less precise than the 
iterative algorithm



“A picture is worth a thousand words”
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

# Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):

nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

# Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):

b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

# Example usage
# Generate some random input data
fs = 100.0 # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

# Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

# Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)
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