Chromatic Analysis of Numerical Program

David DEFOUR, LAMPS, Univ. of Perpignan
Franck Vedrine, Univ. Paris-Saclay CEA List

A few word about colors.... In RGB

Colors naturally provides visual information under additive property

Introduction

- Assessment
- For some applications (DNN), we are more concerned by understanding the resulting value than by the propagation of errors
- Objective
- Estimate the relations between input and output variables
 under additive property
- Solution
- Use the concept of chromatic number to tint scalar or set of scalars
- Each scalar is decomposed as the sum of tinted values

Chromatic number: Definition

- A Chromatic Number consists in associating a color to scalar or set of scalar in order to track them during computation
- Corresponds to a triplet $\left\langle x, k_{x}, V_{x}\right\rangle$
- x is the floating-point number
- V_{x} is a vector of n floating-point numbers representing the weight of the n tints within x such that we have Additive property
- $x=\frac{1}{k_{x}} \sum_{i=0}^{n} V_{x}[i]$
- Properties
- V_{x} Corresponds to a component-wise decomposition of numerical values
- Multiple scalars can be set with the same tint (track multiple values at the same time and helps to reduce the dimensionality of the problem)
- Need to set a "Garbage element" in V_{x} to collect contributions of non-chromatic numbers to preserve additive property.
(Optional element if every computation were done without rounding error ($x=\sum_{i=0}^{n} V_{x}[i]$))

Chromatic number: Operations

- Set a new arithmetic on chromatic numbers:
- Addition: $\left\langle x, k_{x}, V_{x}\right\rangle+\left\langle y, k_{y}, V_{y}\right\rangle=\left\langle x+y, 1, \frac{V_{x}}{k_{x}}+\frac{V_{y}}{k_{y}}\right\rangle$
- Subtraction: $\left\langle x, k_{x}, V_{x}\right\rangle-\left\langle y, k_{y}, V_{y}\right\rangle=\left\langle x-y, 1, \frac{V_{x}}{k_{x}}-\frac{V_{y}}{k_{y}}\right\rangle$
- Multiplication: $\left\langle x, k_{x}, V_{x}\right\rangle .\left\langle y, k_{y}, V_{y}\right\rangle=\left\langle x . y, k_{x}+k_{y}, y \cdot V_{x}+x . V_{y}\right\rangle$
- Division:

$$
\frac{\left\langle x, k_{x}, V_{x}\right\rangle}{\left\langle y, v_{y}, V_{y}\right\rangle}=\left\langle\frac{x}{y}, \frac{x}{v_{y}+\frac{V_{x}}{y}} \frac{2}{2}\right\rangle=\left\langle\frac{x}{y}, k_{x}+k_{y}, \frac{x}{y^{2}} \cdot V_{y}+\frac{V_{x}}{y}\right\rangle
$$

- $\operatorname{Sqrt(x)}$: $\sqrt{\left\langle x, k_{x}, V_{x}\right\rangle}=\left\langle\sqrt{x}, 1, \frac{V_{x}}{k_{x} \sqrt{x}}\right\rangle$
- Any functions: $f\left(<x, k_{x}, V_{x}>,<y, k_{y}, V_{y}>\right)=<f(x+y), k_{x}+k_{y}, \frac{f\left(x, V_{y}\right)+f\left(V_{x}, y\right)}{2}>$

Example 1: Cancellation

- Let consider the sequence of operations
- $a=2$
- $b=3$
- $r=(a . a) . b-12$
- In CA this corresponds to
- $a=\langle 2,1,[0,2,0]>\quad \mathrm{b}=<3,1,[0,0,3]>$
- (a.a) $=\langle 4,2,[0,8,0]>$
- (a.a). $b=<12,3,[0,24,12]>$
- (a.a). $b-12=<0,1,[-12,8,4]>$

Example 2: LP Digital Filter

- Goal:
- Understand how output results are affected by input data, program parameters, etc over time
- Relative weight in the output value of the input values

import numpy as np
from scipy.signal import butter, lfilter, freqz
d matplotlib.pyplot as pIt
Create a low-pass Butterworth filter
butter_lowpass (cutoff, fs, order=5)
nyquist $=0.5 * \mathrm{fs}$
b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a
\# Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
$y=1$ filter(b, a, data)
\# Example usag
\# Generate some random input data
$\mathrm{fs}_{\mathrm{s}}=100.0 \quad$ \# Sample rate (Hz)
\# Filter parameters
order $=6$
cutoff_freq $=10.0 \quad$ \# Desired cutoff frequency (Hz)
\# Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)

7/13

Example 3: Muller’s series

$$
\begin{cases}u_{0} & =5.5 \\ u_{1} & =61.0 / 11.0 \\ u_{n+1} & =111 .-1130 \cdot / u_{n}+3000 . /\left(u_{n} \cdot u_{n-1}\right)\end{cases}
$$

- Goal:
- Give a fine interpretation of what is numerically happening in some pathologicals cases

Related works

1. Sensitivity analysis

- Evaluate how variations in input parameters affect the output
- Identify which input parameters have the greatest effect on the output
- Issues:
- Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on multiple input

2. Automatic Differentiation

- Compute the gradient at each step
- Forward or backward according to the input/output dimensionality
- Implementation:
- Each number X is replaced by a Dual Number $\left\langle\underset{\chi}{x} \mid x^{\prime}\right\rangle$ where x^{\prime} is the derivative such that $X=$ $x+x^{\prime} \varepsilon$ with ε an abstract number such that $\varepsilon^{2}=0$.
- Problematic with complex multivariate program as untracked variables are not taken into account
(Solution: rely on automated sparsity detection of the Jacobian matrix)

Graphical illustration of CA vs AD

Experiments: inference in DNN MNIST

1 pixel = 1 index

784,100,50,10 Network

Possible usage: adversarial attack to alter output probability classification by minimizing the number of modified pixel

Execution overhead: x100 on time, x20 on memory

$\mathrm{PO}=0.001$	<0.0,-0.010,0.020, ..., 0.0>
$\mathrm{P} 1=0.001$	<0.0,0.120,0.085, ..., 0.0>
$\mathrm{P} 2=0.003$	<0.0,0.037,-0.008, ..., 0.0>
$\mathrm{P} 3=0.005$	<0.0,-0.062,-0.011, ..., 0.0>
P4 $=0.005$	<0.0,0.074,0.001, ..., 0.0>
$\mathrm{P} 5=0.020$...
P6 =0.010	
P7 $=0.950$	
$\mathrm{P} 8=0.002$	<0.0,0.003,-0.007,, 0.0>
$\mathrm{P9}=0.003$	<0.0,-0.003,-0.008, ..., 0.0>

Output probability + Pixel-wise decomposition
(784+1 elements)

$$
\begin{aligned}
& 73773731777377373477
\end{aligned}
$$

$$
\begin{aligned}
& 37737737533773773733 \\
& 77777333337777733333 \\
& 73333773377333372337 \\
& 77773737337777373733
\end{aligned}
$$

Experiments: Training DNN MNIST

- Goal
- Track the weight of image class during learning phase
- Understand the network's numerical behavior
- Methodology
- Tint according to its image classification (0 to 9)
- Each of the 84k coefficients are decomposed according to image classification
- Ouput
- Resulting network made of coefficient decomposed as chromatic numbers tinted according to the input images class
- Overhead
- x1800 time (not possible to use optimized BLASS)
- x12 on memory

Conclusion

- Chromatic analysis
- Additive decomposition of results according to tinted values/set of values
- Allows fusion of data to limit the dimensionality problem encountered with other analysis
- Helps understand what is important among input values, constant, scalar and their numerical relation (ex: cancellations)
- Preserve the input data structures
- Future works
- Thanks to the additive property, it is possible to combine this analyse with an iterative refinement algorithm to reduce the memory overhead
- Start with a few sets of tracked values (low memory / low computational overhead),
- Restart the analyses by splitting only sets of variables which are having a large impact
- Combine chromatic analysis with others to reduce the cost of global sensitivity analysis
- Will help focusing on variables of interest.
- Investigate various tinting mechanism
- According to data type, time, location (functions, MPI Process...)
- Test on real life program (numerically instruct abnormality)

Example: Error Free Transformation

$$
\begin{aligned}
& (s, t)=\operatorname{Fast} 2 \operatorname{Sum}(a, b) / / a \gg b \\
& s=a+b \\
& r=s-a \\
& t=b-r
\end{aligned}
$$

$$
a=<a, 1,[0, a, 0]>
$$

$$
b=<b, 1,[0,0, b]>
$$

$$
s=<a, 1,[0, a, b]>
$$

$$
r=<0,1,[0,0, b]>
$$

$$
t=<b, 1,[0,0,0]>
$$

$0 \neq 0+0+b$
Does not take into account
rounding error

Example: Error Free Transformation

$$
\begin{aligned}
& (s, t)=\operatorname{Fast2Sum}(a, b) / / a \gg b \\
& s=a+b \\
& r=s-a \\
& t=b-r
\end{aligned}
$$

$$
a=\langle a, 1,[0, a, 0]>
$$

$$
a=<a, 1,[0,0, a, 0]>
$$

$$
b=<b, 1,[0,0, b]>
$$

$$
b=<b, 1,[0,0,0, b]>
$$

$$
s=<a, 1,[0, a, b]>
$$

$$
r=<0,1,[0,0, b]>
$$

$$
t=<b, 1,[0,0,0]>
$$

$$
0 \neq 0+0+b
$$

Does not take into account
rounding error
=> Include a rounding error term
=> Dedicated routines for EFT
$s=<a, 1,[0,-b, a, b]>$
$r=<0,1,[0,-b, 0, b]>$
$t=<b, 1,[0, b, 0,0]>$

Chromatic number: Implementation

- Space and time complexity grows linearly with the number of tinted values.
- Example: A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of intermediate representation.
- C++/Python implementation with V_{x} stored either as a dense/sparse structure (vector/dictionary)
- Optimization: Fusion of small contributions
- Discard tinted element which are becomingtoosmall compared to others and accumulate them in the garbage element ($\left(\frac{v_{x[i]}}{V_{x[i j}} \geq C\right.$ with C a tunable parameter typically set to 2^{53} for double precision). Particularly useful when used when V_{x} is a dictionary structure.
- Optimization: Error element
- Set an element to track rounding errors performed on x in $\left\langle x \mid V_{x}\right\rangle$
- Accumulate rounding error similarly to compensated algorithm (use of EFT \& extended precision)

Chromatic number: Implementation

- Optimization: Refinement algorithm
- Start the chromatic analysis by aggregating the maximum number of value under the same tint in order to minimize the size of V_{x}.
- Detect which tint account for the most and restart the computation by subdividing the selected tint, while detecting under-approximation (cancellation within a tint)

```
Algorithm 1 Contribution refinement subdivision algorithm
Require: }O=func(I)\mathrm{ the function to analyse
Require: I the set of scalar to track
Require: }\operatorname{card}(I)=N\mathrm{ , and }O=\langleo,\mp@subsup{V}{o}{}
        I'=split(I) 
    do
        O'=func(I')
        S=False
        for i in I' do
            if }|\mp@subsup{o}{}{\prime}|>\mp@subsup{k}{0}{}|\mp@subsup{V}{\mp@subsup{o}{}{\prime}}{\prime}[1]| and |\mp@subsup{V}{\mp@subsup{o}{}{\prime}}{\prime}[i+2]|>\mp@subsup{k}{1}{}|\mp@subsup{V}{\mp@subsup{o}{}{\prime}}{\prime}[1]| and
                card(I'[i])}>1\mathrm{ then
                I'=split(I'[i])
                S=True
            end if
            end for
        while S
```


Experiment: Sparse solver

- Matrix from MatrixMarket:
- BCSSTK13: size $2003 \times 2003 ; 42943$ entries; estimated conditioned number 4.61010
- BCSSTK14: size $1806 \times 1806 ; 32630$ entries; estimated conditioned number 1.31010
- Execution time in sec. and memory to solve BCSSTK14 between Python and C++ version.
- 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of the system)
- Memory usage grows linearly => x500-1000 on memory for 1000 tinted values

Number of tinted value followed	no-instr	1	16	32
Python	$250 \mathrm{~s} / 70 \mathrm{Mo}$	1634 s	2022 s	2500 s
		$/ 108 \mathrm{Mo}$	$/ 125 \mathrm{Mo}$	$/ 156 \mathrm{Mo}$
C++	$0.13 \mathrm{~s} / 21 \mathrm{Mo}$	1.3 s	40 s	92 s
		$/ 26 \mathrm{Mo}$	$/ 135 \mathrm{Mo}$	$/ 253 \mathrm{Mo}$

Experiment $\mathrm{N}^{\circ} 3$: Sparse solver

- Iterative refinement algorithm, starting with a 4×4 subdivision according to the index in each direction of the matrix BCSSTK13.
- Stops after 5 iterations in 836 sec.

Reference
Analysis conduced while keeping the 128 most contributing tint in each cell. (2205 sec)
=> More time consuming and less precise than the iterative algorithm

"A picture is worth a thousand words"

```
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
# Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):
    nyquist = 0.5 * fs
    normal_cutoff = cutoff / nyquist
    b, a = butter(order, normal_cutoff, btype='low', analog=False)
    return b, a
# Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):
    b, a = butter_lowpass(cutoff, fs, order=order)
    y = lfilter(b, a, data)
    return y
# Example usage
# Generate some random input data
fs = 100.0 # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2* np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20*t)
# Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)
# Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)
```

