
Chromatic Analysis of Numerical
Program

David DEFOUR, LAMPS, Univ. of Perpignan

Franck Vedrine, Univ. Paris-Saclay CEA List

A few word about colors…. In RGB

RED
(122,0,0)

BLUE
(0,0,122)+ = PURPLE

(122,0,122)

GREEN
(0,122,0)

BLUE
(0,0,122)+ = CIAN

(0,122,122)

RED
(122,0,0)

GREEN
(0,122,0)+ = YELLOW

(122,122,0)

CIAN
(0,122,122)

CIAN
(0,254,254)+ =

PURPLE
(122,0,122)

YELLOW
(122,122,0)+ =

+ = PURPLE
(254,0,254)

YELLOW
(254,254,0)

Colors naturally provides visual information under additive property 2/13

Introduction

• Assessment
• For some applications (DNN), we are more concerned by

understanding the resulting value than by the propagation of
errors

• Objective
• Estimate the relations between input and output variables

under additive property

• Solution
• Use the concept of chromatic number to tint scalar or set of

scalars
• Each scalar is decomposed as the sum of tinted values

3/13

Chromatic number: Definition

• A Chromatic Number consists in associating a color to scalar or set of scalar in order to
track them during computation

• Corresponds to a triplet 𝑥, 𝑘𝑥 , 𝑉𝑥
• 𝑥 is the floating-point number

• 𝑉𝑥 is a vector of 𝑛 floating-point numbers representing the weight of the 𝑛 tints within 𝑥 such that we have
Additive property

• 𝑥 =
1

𝑘𝑥
σ𝑖=0

𝑛 𝑉𝑥 𝑖

• Properties
• 𝑉𝑥 Corresponds to a component-wise decomposition of numerical values

• Multiple scalars can be set with the same tint
(track multiple values at the same time and helps to reduce the dimensionality of the problem)

• Need to set a “Garbage element” in 𝑉𝑥 to collect contributions of non-chromatic numbers to
preserve additive property.
(Optional element if every computation were done without rounding error (𝑥 = σ𝑖=0

𝑛 𝑉𝑥[𝑖]))

4/13

Chromatic number: Operations

• Set a new arithmetic on chromatic numbers:

• Addition: < 𝑥, 𝑘𝑥 , 𝑉𝑥 > + < 𝑦, 𝑘𝑦 , 𝑉𝑦 > = < 𝑥 + 𝑦 , 1,
𝑉𝑥

𝑘𝑥
+

𝑉𝑦

𝑘𝑦
>

• Subtraction: < 𝑥, 𝑘𝑥 , 𝑉𝑥 > − < 𝑦, 𝑘𝑦 , 𝑉𝑦 > = < 𝑥 − 𝑦 , 1,
𝑉𝑥

𝑘𝑥
−

𝑉𝑦

𝑘𝑦
>

• Multiplication: < 𝑥, 𝑘𝑥 , 𝑉𝑥 > . < 𝑦, 𝑘𝑦 , 𝑉𝑦 > = < 𝑥. 𝑦 , 𝑘𝑥 + 𝑘𝑦 , 𝑦. 𝑉𝑥 + 𝑥. 𝑉𝑦 >

• Division:
<𝑥,𝑘𝑥,𝑉𝑥>

<𝑦,𝑘𝑦,𝑉𝑦>
 = <

𝑥

𝑦
,

𝑥

𝑉𝑦
+

𝑉𝑥
𝑦

2
> = <

𝑥

𝑦
 , 𝑘𝑥 + 𝑘𝑦 ,

𝑥

𝑦2 . 𝑉𝑦 +
𝑉𝑥

𝑦
>

• Sqrt(x): < 𝑥, 𝑘𝑥 , 𝑉𝑥 >= < 𝑥, 1,
𝑉𝑥

𝑘𝑥 𝑥
>

• Any functions: 𝑓 < 𝑥, 𝑘𝑥 , 𝑉𝑥 >, < 𝑦, 𝑘𝑦 , 𝑉𝑦 > = < 𝑓 𝑥 + 𝑦 , 𝑘𝑥 + 𝑘𝑦 ,
𝑓 𝑥,𝑉𝑦 +𝑓 𝑉𝑥,𝑦

2
>

5/13

Example 1: Cancellation

• Let consider the sequence of operations
• 𝑎 = 2
• 𝑏 = 3
• 𝑟 = 𝑎. 𝑎 . 𝑏 − 12

• In CA this corresponds to
• 𝑎 =< 2, 1, 0,2,0 > b=< 3, 1, 0,0,3 >

• (𝑎. 𝑎) =< 4, 2, 0,8,0 >
• (𝑎. 𝑎). 𝑏 =< 12, 3, 0,24,12 >
• (𝑎. 𝑎). 𝑏 − 12 =< 𝟎, 1, −12, 8, 4 >

Garbage element

6/13

Example 2: LP Digital Filter
• Goal:

• Understand how output results are affected by input data, program
parameters, etc over time

• Relative weight in the
output value of the input values

import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):

nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):

b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

Example usage
Generate some random input data
fs = 100.0 # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)

7/13

Example 3: Muller’s series

• Goal:
• Give a fine interpretation of what is numerically happening in some pathologicals cases

8/13

Related works

1. Sensitivity analysis
• Evaluate how variations in input parameters affect the output
• Identify which input parameters have the greatest effect on the output
• Issues:

• Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on
multiple input

2. Automatic Differentiation
• Compute the gradient at each step
• Forward or backward according to the input/output dimensionality
• Implementation:

• Each number X is replaced by a Dual Number 𝑥 𝑥′ where x’ is the derivative such that 𝑋 =
𝑥 + 𝑥′𝜀 with 𝜀 an abstract number such that 𝜀2 = 0.

• Problematic with complex multivariate program as untracked variables are not
taken into account
(Solution: rely on automated sparsity detection of the Jacobian matrix)

9/13

Graphical illustration of CA vs AD
𝑓 𝑥, 𝑦 = 𝑥2 + 𝑦2

Local steepness
measure

Relative weight of x (red)
and y (blue) in f(x,y)

Chromatic analysis AD analysis 10/13

Experiments: inference in DNN MNIST

1 pixel = 1 index
784,100,50,10 Network

P0=0.001 <0.0,-0.010,0.020, ….,0.0>

P1=0.001 <0.0,0.120,0.085, ….,0.0>

P2=0.003 <0.0,0.037,-0.008, ….,0.0>

P3=0.005 <0.0,-0.062,-0.011, ….,0.0>

P4=0.005 <0.0,0.074,0.001, ….,0.0>

P5=0.020 …

P6=0.010

P7=0.950

P8=0.002 <0.0,0.003,-0.007, ….,0.0>

P9=0.003 <0.0,-0.003,-0.008, ….,0.0>

Output probability +
Pixel-wise decomposition

(784+1 elements)

Possible usage: adversarial attack to alter output probability
classification by minimizing the number of modified pixel

Execution overhead: x100 on time, x20 on memory 11/13

Experiments: Training DNN MNIST

• Goal
• Track the weight of image class during learning phase
• Understand the network’s numerical behavior

• Methodology
• Tint according to its image classification (0 to 9)
• Each of the 84k coefficients are decomposed according to image

classification

• Ouput
• Resulting network made of coefficient decomposed as chromatic

numbers tinted according to the input images class

• Overhead
• x1800 time (not possible to use optimized BLASS)
• x12 on memory

For an image:
each pixel = same index

12/13

Conclusion

• Chromatic analysis
• Additive decomposition of results according to tinted values/set of values
• Allows fusion of data to limit the dimensionality problem encountered with other

analysis
• Helps understand what is important among input values, constant, scalar and their

numerical relation (ex: cancellations)
• Preserve the input data structures

• Future works
• Thanks to the additive property, it is possible to combine this analyse with an

iterative refinement algorithm to reduce the memory overhead
• Start with a few sets of tracked values (low memory / low computational overhead),
• Restart the analyses by splitting only sets of variables which are having a large impact

• Combine chromatic analysis with others to reduce the cost of global sensitivity
analysis

• Will help focusing on variables of interest.
• Investigate various tinting mechanism

• According to data type, time, location (functions, MPI Process…)
• Test on real life program (numerically instruct abnormality) 13/13

Example: Error Free Transformation

(s , t) = Fast2Sum(a , b) // a>>b
s = a + b
r = s – a
t = b – r

a = <a , 1 , [0 , a , 0]>

b = <b , 1 , [0 , 0 , b]>

s = <a , 1 , [0 , a , b]>

r = <0 , 1 , [0 , 0 , b]>

t = <b , 1 , [0 , 0 , 0]>

0 ≠ 0 + 0 + 𝑏
Does not take into account
rounding error

Example: Error Free Transformation

(s , t) = Fast2Sum(a , b) // a>>b
s = a + b
r = s – a
t = b – r

a = <a , 1 , [0 , a , 0]>

b = <b , 1 , [0 , 0 , b]>

s = <a , 1 , [0 , a , b]>

r = <0 , 1 , [0 , 0 , b]>

t = <b , 1 , [0 , 0 , 0]>

0 ≠ 0 + 0 + 𝑏
Does not take into account
rounding error
=> Include a rounding error term
=> Dedicated routines for EFT

a = <a , 1 , [0 , 0 , a , 0]>

b = <b , 1 , [0 , 0 , 0 , b]>

s = <a , 1 , [0 , -b , a , b]>

r = <0 , 1 , [0 , -b , 0 , b]>

t = <b , 1 , [0 , b , 0 , 0]>

Chromatic number: Implementation

• Space and time complexity grows linearly with the number of tinted values.
• Example: A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of

intermediate representation.
• C++/Python implementation with 𝑉𝑥 stored either as a dense/sparse structure

(vector/dictionary)

• Optimization: Fusion of small contributions
• Discard tinted element which are becoming too small compared to others and

accumulate them in the garbage element (
𝑉𝑥 𝑖

𝑉𝑥 𝑗
≥ 𝐶 with 𝐶 a tunable parameter

typically set to 253 for double precision). Particularly useful when used when 𝑉𝑥 is a
dictionary structure.

• Optimization: Error element
• Set an element to track rounding errors performed on 𝑥 in 𝑥 𝑉𝑥
• Accumulate rounding error similarly to compensated algorithm (use of EFT &

extended precision)

Chromatic number: Implementation

• Optimization: Refinement algorithm
• Start the chromatic analysis by

aggregating the maximum number of
value under the same tint in order to
minimize the size of 𝑉𝑥 .

• Detect which tint account for the most
and restart the computation by
subdividing the selected tint, while
detecting under-approximation
(cancellation within a tint)

Experiment : Sparse solver

• Matrix from MatrixMarket:
• BCSSTK13: size 2003 x 2003; 42943 entries; estimated

conditioned number 4.6 1010
• BCSSTK14: size 1806 x 1806; 32630 entries; estimated

conditioned number 1.3 1010

• Execution time in sec. and memory to solve BCSSTK14 between
Python and C++ version.

• 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of
the system)

• Memory usage grows linearly => x500-1000 on memory for 1000 tinted
values

Experiment N°3: Sparse solver

• Iterative refinement algorithm , starting with a 4x4 subdivision
according to the index in each direction of the matrix BCSSTK13.

• Stops after 5 iterations in 836 sec.

Reference
Analysis conduced while keeping the 128 most
contributing tint in each cell. (2205 sec)
=> More time consuming and less precise than the
iterative algorithm

“A picture is worth a thousand words”
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):

nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):

b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

Example usage
Generate some random input data
fs = 100.0 # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)

	Slide 1: Chromatic Analysis of Numerical Program
	Slide 2: A few word about colors…. In RGB
	Slide 3: Introduction
	Slide 4: Chromatic number: Definition
	Slide 5: Chromatic number: Operations
	Slide 6: Example 1: Cancellation
	Slide 7: Example 2: LP Digital Filter
	Slide 8: Example 3: Muller’s series
	Slide 9: Related works
	Slide 10: Graphical illustration of CA vs AD
	Slide 11: Experiments: inference in DNN MNIST
	Slide 12: Experiments: Training DNN MNIST
	Slide 13: Conclusion
	Slide 14
	Slide 15: Example: Error Free Transformation
	Slide 16: Example: Error Free Transformation
	Slide 17: Chromatic number: Implementation
	Slide 18: Chromatic number: Implementation
	Slide 19: Experiment : Sparse solver
	Slide 20: Experiment N°3: Sparse solver
	Slide 22: “A picture is worth a thousand words”

