Chromatic Analysis of Numerical

Program

David DEFOUR, LAMPS, Univ. of Perpignan

Franck Vedrine, Univ. Paris-Saclay CEA List

OE T
ol | B
AEE
Q= O
280
co00
20>

T
I\J‘_J D

A few word about colors.... In RGB

RED BLUE
+ (0,0,122)

(122,0,0)

RED
(122,0,0) +

+ BLUE CIAN
(0,0,122) - (0,254,254)

- YELLOW
- (254,254,0)

Colors naturally provides visual information under additive property 2/13

Introduction

* Assessment

* For some applications (DNN), we are more concerned by
understanding the resulting value than by the propagation of
errors

* Objective
* Estimate the relations between input and output variables
under additive property

e Solution

. UseI the concept of chromatic number to tint scalar or set of
scalars

e Each scalar is decomposed as the sum of tinted values

3/13

Chromatic number: Definition

* A Chromatic Number consists in associating a color to scalar or set of scalar in order to
track them during computation

* Corresponds to a triplet (x, k., Vi)
* X is the floating-point number
* V, is a vector of n floating-point numbers representing the weight of the 1 tints within X such that we have

Additive property
1 wn .
* X = Li=o Veli]
X

* Properties

* I/, Corresponds to a component-wise decomposition of numerical values
e Multiple scalars can be set with the same tint
(track multiple values at the same time and helps to reduce the dimensionality of the problem)

* Need to set a “Garbage element” in I/, to collect contributions of non-chromatic numbers to
preserve additive property.

(Optional element if every computation were done without rounding error (x = Y1 Vi [i]))

4/13

Chromatic number: Operations

 Set a new arithmetic on chromatic numbers:

e Addition:

e Subtraction:

* Multiplication:

e Division:

e Sgrt(x):

* Any functions:

< Xk Ve > + <y ky,V,>=<x+y, 1kx i>

< Xk Ve > — <y k), V,>=<x-y, 1—x—g>

<Xk, Ve >. <y, k), V), >= <x.y,ky +ky,y Ve +x.V, >
x Vy

SN =< =<tk S+

J< X kg, Vi >= <\/§,1,k:3§>

V. Vye,
(x y)'z"f(y) >

f(< ke, Ve > <y, ky,Vy>) = < flx+y),ky +ky,

5/13

Example 1: Cancellation

* Let consider the sequence of operations
ca=2
eh=3
cr=(a.a).b—12

* In CA this corresponds to
e a=<21[020]> b=<311[003]>

* (a. Cl) =< 4,2, [0;8;0] > Garbage element
* (a.a).b =< 12,3, 10,24,12] >
* (a.a).b —12=<0,1,|—12,8,4| >

6/13

Example 2: LP Digital Filter

* Goal:

* Understand how output results are affected by input data, program
parameters, etc over time

* Relative weight in the
output value of the input values

Amplitude

—0.5

1.0 4

Amplitude

1.0 +

0.5 +

0.0

—&— Output

import numpy as np
from scipy.signal import butter, 1lfilter, freqz
import matplotlib.pyplot as plt

Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):
nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

Apply the filter to the input signal

def butter_lowpass_filter(data, cutoff, fs, order=5):
b, a = butter_lowpass(cutoff, fs, order=order)
y = 1filter(b, a, data)
return y

Example usage

Generate some random input data

fs = 100.0 # Sample rate (Hz)

t = np.linspace(®, 1, int(fs), endpoint=False)

data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)

0.0

0.2

0.8 1.0

=
L=
L

2 L 22 2
= [+ o w
I I I I I

« Input

0.0

0.2

0.4 0.6
Time [s]

0.8

1.0

€ 1
=
£ o0+
a
£ 1 —&— Input
T S T T T T T
e nn na ne n 1n
§ Output weight
=
.
-1 T T T T T T
1o nn na ne n 1n
b
= Other weight
g_ o 1 . . g
-1+ T T T T
1ot an na na na 1a
() 7 K i a o n o u
g - -5 F e ~» o o~
% o4 - Error's weight ™ k. = > Y I bt
gL v W W W W
0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

5.5
61.0/11.0
111. — 1130. /u,, + 3000. / (thy, 21— 1)

Example 3: Muller’s series (o

Up+1

e Goal:
e Give a fine interpretation of what is numerically happening in some pathologicals cases

65 65 -
50 - 50
35 - 35
20 1 20
:; 5] <D< 5 1
~ o i
o A0 % 10
g 25 o 25 1
o 4
8 483 g 48 3
.E _25 . e 8 | il - - ! 'é '25 T
- = _ .
3 10 - . | ‘ . | g -10
4 b x 3| & A x ! | : 20 1
20 — Up+1
35 | | BT
50 - — : | - 07—
65 T T T T T T T T
65 - ‘
4 !] ' ! ! ! 0 5 10 15 20 25 30 35
0 5 10 15 20 25 30 35

2 SO ; Automatic Differentation iteration number
Chromatic Analysis iteration number 8/13

Related works

1. Sensitivity analysis
e Evaluate how variations in input parameters affect the output
* |dentify which input parameters have the greatest effect on the output

* |ssues:

* Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on
multiple input

2. Automatic Differentiation
 Compute the gradient at each step
* Forward or backward according to the input/output dimensionality

* Implementation:

* Each number X is replaced by a Dual Number (3Z(|x) where x’ is the derivative such that X =
x + x'& with € an abstract number such that €

* Problematic with complex multivariate program as untracked variables are not

taken into account

(Solution: rely on automated sparsity detection of the Jacobian matrix) 0/13

Graphical illustration of CA vs AD

Local steepness

flx,y) = x? + y?

Relative weight of x (red)

measure

fix.y)

and y (blue) in f(x,y)

Grad Norm

Gradient's vector field for f(x,y)

f(x,y)

s o = ©
NARNARRAR AR

NARRAAAA
NEREANANNN
ARARANNRANRK
AN R Y
BRRRRNNNN
RRRRN K
RN W %

A S R

LSS SN

R

P
P O
SALAA LA
LALALAA AN
LA AN
AL A AN
LA

<+

P e
P

¥

‘i
/¥
i
i

o~

- e e

- m e e

IRy dd
1tErrrrrr-s7
IRV DI

PIPIFFA”

LI BV O B

P

ARSI
S AR
PR g
B i el ad

P

-

R AT e
NN NN N NN
OO NN

OO T

VOO
OO
VAV
T \

fraction (23 bit)

= -0

y &

sign exponent (8 bit)

aljojojo|ojo|Cjogo|OjO|OjO|Clojo|Ofo|C|O|O|o|0

[
3
Chromatic analysis

ljojofojojo|o|o|o

10/13

Experiments: inference in DNN MNIST

1 pixel = 1 index
784,100,50,10 Network

Possible usage: adversarial attack to alter output probability
classification by minimizing the number of modified pixel
Execution overhead: x100 on time, x20 on memory

W AN WWI PN
aN w-HJwy wd ¢
dVvwNHwhYwd
FPoONUN RO AU
HhWwINDWww @
WP N oD ¢y
WV oWt WwpPeWw

P0=0.001 <0.0,-0.010,0.020,,0.0>
P1=0.001 <0.0,0.120,0.085,,0.0>
P2=0.003 <0.0,0.037,-0.008,,0.0>
P3=0.005 <0.0,-0.062,-0.011,,0.0>
P4=0.005 <0.0,0.074,0.001,,0.0>
P5=0.020

P6=0.010

P7=0.950

P8=0.002 <0.0,0.003,-0.007,,0.0>
P9=0.003 <0.0,-0.003,-0.008,,0.0>

Output probability +
Pixel-wise decomposition
(784+1 elements)

~JdopWgedwd
MPWWAROWIA
Jouwwwdy WJ N
W) N W WL (P

e N W) Wl g
~ N e o s N
SN e W A
g W e L2 W G
43 2 L ed D (F Y

W Do 02 G4l b (O e W

.

RS e dw L

R UNOSUT RV R VLR BN
4 ou g v W e (- N

11/13

Experiments: Training DNN MNIST

Goal
* Track the weight of image class during learning phase

. . glojojcigiojojelzicjojolsye oo
* Understand the network’s numerical behavior InNRNBRENDGEAROARGT
FFREEERPERFAEBRRER
* Methodology EEEEEEEEEEEEEEE
* Tint according to its image classification (0 to 9) 1 EZ ; o ';1 4 : 4 ; v|4 ; [K1 I

. . . . = 5 S § 1 Ex
* Each of the 84k coefficients are decomposed according to image T 2 = 1 A A P P z : y; i 71 E
classification LR EEL IR
AEE OB E AL E N E BN E
* Ouput slalalalalalalalolalalalalal=

* Resulting network made of coefficient decomposed as chromatic
numbers tinted according to the input images class

Overhead

* x1800 time (not possible to use optimized BLASS)
* x12 on memory

0 1 2 3 4 5 6 7 8 9

For an image

o

04
0.02
0.00
-0.02

—0.04

each pixel =same index

12/13

Conclusion

* Chromatic analysis

» Additive decomposition of results according to tinted values/set of values

. AIIolws_ fusion of data to limit the dimensionality problem encountered with other
analysis

* Helps understand what is important among input values, constant, scalar and their
numerical relation (ex: cancellations)

* Preserve the input data structures

e Future works
* Thanks to the additive property, it is possible to combine this analyse with an
iterative refinement algorithm to reduce the memory overhead
 Start with a few sets of tracked values (low memory / low computational overhead),
* Restart the analyses by splitting only sets of variables which are having a large impact

. ConTbi_ne chromatic analysis with others to reduce the cost of global sensitivity
analysis

* Will help focusing on variables of interest.
* |Investigate various tinting mechanism
* According to data type, time, location (functions, MPI Process...)
* Test on real life program (numerically instruct abnormality) 13/13

Example: Error Free Transformation

(s, t) = Fast2Sum(a, b)

s=a+b
r= s—a
t=b-—r

a=<a,1,[0,a,0]>
b=<b,1,[0,0,b]>

1> 0+0+0+b
1> Does not take into account
. rounding error

s=<a,l1,]|
r=<0,1,|
t=<b,1,]

© O O
© O w
© T T

1>

Example: Error Free Transformation

(s, t) = Fast2Sum(a, b)

s=a+b

r= Ss—d

t=b-r

a=<a,1,[0,a,0]> a=<a,1,[0,0,a,0]>

b=<blll[0101b]> b=<blll[olololb]>

s=<a,1,[0,a,b]> 0%040+h s=<a,1,[0,-b,a,b]>

r=<0,1, O’O’b'> Does not take into account r=<0,1 0 b 0 b]>
i rounding error t=<b,1,[0,b,0,0]>

t=<b,1,[0,0,0]> => Include a rounding error term ’]

=> Dedicated routines for EFT

Chromatic number: Implementation

e Space and time complexity grows linearly with the number of tinted values.

 Example:; A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of
|ntermed|ate representation.

e C++/Py }hon |mplementat|on with 1, stored either as a dense/sparse structure
vector dictionary)

* Optimization: Fusion of small contributions
* Discard tinted element which are becomingtoo;small compared to others and
accumulate them in the garbage element (i J > (C with C a tunable parameter
T

typically set to 2°3 for double precision). P larly useful when used when V, is a
dlctlonary structure.
* Optimization: Error element
* Set an element to track rounding errors performed on x in (x|V,.)

* Accumulate rounding error similarly to compensated algorithm (use of EFT &
extended precision)

Chromatic number: Implementation

e Optimization: Refinement algorithm

e Start the chromatic analysis by
aggregating the maximum number of
value under the same tint in order to
minimize the size of V,, .

* Detect which tint account for the most
and restart the computation by
subdividing the selected tint, while
detecting under-approximation
(cancellation within a tint)

Algorithm 1 Contribution refinement subdivision algorithm

Require: O=func(I) the function to analyse
Require: [/ the set of scalar to track
Require: card(l) = N, and O = (o, V,)
I'=split(I) = Imitial Spliting
do
O’=func(I’)
5 =False
for i in [’ do
if |0'| = kqo|V,/[1]] and |V, i + 2| = ki|V,[1]| and
card(I'[1])=> 1 then
['=split(I°[1])
S5 =True
end if
end for
while 5

Experiment : Sparse solver

e Matrix from MatrixMarket:

« BCSSTK13: size 2003 x 2003; 42943 entries; estimated
conditioned number 4.6 1010

« BCSSTK14: size 1806 x 1806; 32630 entries; estimated
conditioned number 1.3 1010

« Execution time in sec. and memory to solve BCSSTK14 between
Python and C++ version.

« 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of
the system)

« Memory usage grows linearly => x500-1000 on memory for 1000 tinted

values

Number of no-instr 1 16 32

tinted wvalue

followed

Python 250s [70Mo 16345 20225 25005
M08Mo f125Mo f156Mo

C++ (.13s 21Mo 1.3s 4i)s 025
26Mo f135Mo f253Mo

Experiment N°3: Sparse solver

* [terative refinement algorithm , starting with a 4x4 subdivision
according to the index in each direction of the matrix BCSSTK13.

 Stops after 5 iterations in 836 sec.

Reference

Analysis conduced while keeping the 128 most
contributing tint in each cell. (2205 sec)

=> More time consuming and less precise than the
iterative algorithm

“A picture is worth a thousand words”

import numpy as np
from scipy.signal import butter, 1lfilter, freqz
import matplotlib.pyplot as plt

Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):
nyquist = 0.5 * fs
normal cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

Apply the filter to the input signal

def butter lowpass filter(data, cutoff, fs, order=5):
b, a = butter lowpass(cutoff, fs, order=order)
y = 1filter(b, a, data)
return y

Example usage

Generate some random input data

fs = 100.0 # Sample rate (Hz)

t = np.linspace(@, 1, int(fs), endpoint=False)

data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

Filter parameters
order = 6
cutoff _freq = 10.0 # Desired cutoff frequency (Hz)

Apply the filter to the input data
filtered_data = butter lowpass filter(data, cutoff_freq, fs, order)

Amplitude

15 4

10 4

05 A

00 A

—0.5 A

=-1.0 4

-1.5 A1

= |nput
= Filterad

0.0 02 04 06 08 10
Time [5]

	Slide 1: Chromatic Analysis of Numerical Program
	Slide 2: A few word about colors…. In RGB
	Slide 3: Introduction
	Slide 4: Chromatic number: Definition
	Slide 5: Chromatic number: Operations
	Slide 6: Example 1: Cancellation
	Slide 7: Example 2: LP Digital Filter
	Slide 8: Example 3: Muller’s series
	Slide 9: Related works
	Slide 10: Graphical illustration of CA vs AD
	Slide 11: Experiments: inference in DNN MNIST
	Slide 12: Experiments: Training DNN MNIST
	Slide 13: Conclusion
	Slide 14
	Slide 15: Example: Error Free Transformation
	Slide 16: Example: Error Free Transformation
	Slide 17: Chromatic number: Implementation
	Slide 18: Chromatic number: Implementation
	Slide 19: Experiment : Sparse solver
	Slide 20: Experiment N°3: Sparse solver
	Slide 22: “A picture is worth a thousand words”

