Improved Montgomery Multiplication

Trenton J. Grale Earl E. Swartzlander, Jr.

ARITH 2023

Montgomery Multiplication Basics

- Operands in "Montgomery Domain"
- Montgomery product P = ABR⁻¹ mod M
- Computation:
 - $-T = AB T_0 = T \mod R$ $-Q = T_0 M' \mod R Q_0 = Q \mod M$

$$-U = Q_0 M$$

$$-P = (T + U) / R$$

$$- \text{ If } (P > M): P = P - M$$

• Can be performed at digit or bit level

Serial Montgomery Model

Reduction Mode		Digit Scanning Priority				
		Operand	Hybrid	Product		
Separated		SOS				
Integrated	Coarse	CIOS	CIHS			
Integrated	Fine	FIOS		FIPS		

- *n* Operand word size (bits)
- d Digit size (bits)
- k Number of digits = $\left[n/d \right]$

Category	Scanning Order	# Cycles
SOS	k², k(1, k)	$2k^2 + k$
CIOS	k(k, 1, k)	$2k^2 + k$
FIOS	<i>k</i> [1, 1, 1, 2(<i>k</i> –1)]	$2k^2 + k$

Serial Montgomery Implementations

- Eberle, et al. digit-digit architecture
- Großschädl, et al. bit-word architecture
- Tenca & Koç bit-digit architecture

Architecture	Base Operand	# Base Operations	# Cycles	Koç Classification
Eberle	Digit	$2k^2 + k$	$2k^2 + k$	CIOS
Großschädl	Bit/word	n	n + k	FIOS ^a
Tenca & Koç	Bit/digit	nk	2 <i>n</i> + <i>k</i> − 1	FIOS ^a
^a Closest fit				

Serial Architectures

ARITH2023

Extended Serial Montgomery Model

- Other scanning and reductions modes are possible
- Separated Product Scanning (SPS)
- Digit level parallelism—schedule multiple concurrent operand or product digit computations
- *m*: Number of digit multipliers

Extended Serial Montgomery Model

Reduction Mode		Digit Scheduling Priority				
		Operand	Hybrid	Product		
Separated		SOS/m		SPS/m		
Integrated	Coarse	CIOS/m	CIHS/m			
Integrated	Fine	FIOS/m		FIPS/m		

Category	Schedule Order (<i>m</i> = 1)	# Cycles	Schedule Order (<i>m</i> > 1)	# Cycles
SOS	k², k(1, k)	$2k^2 + k$	$\left[k^{2}/m\right], k(1, \left[k/m\right])$	$\left[k^2/m\right] + k\left[k/m\right] + k$
CIOS	k(k, 1, k)	$2k^2 + k$	k([k/m], 1, [k/m])	2k[k/m] + k
FIOS	<i>k</i> [1, 1, 1, 2(<i>k</i> –1)]	$2k^2 + k$	k[1, 1, 1, [2(k-1)/m]]	k 2(k-1)/m + 3k
SPS	k^2 , $(k^2 + k)/2$, k^2	$2.5k^2 + 0.5k$	$[k^2, (k^2+k)/2, k^2]/m$	$\left[(2.5k^2 + 0.5k)/m\right]$

Cycle Counts with Digit Level Parallelism (k = 4)

k	m	SOS	CIOS	FIOS	SPS
4	1	36	36	36	42
	2	20	20	24	21
	3	18	20	20	14
	4	12	12	20	11
	5	12	12	20	9

Montgomery Macro Optimization

Digit Multiplication, *k* = 2

 $N_P = k^2$

$$N_Q = (k^2 + k) / 2$$

$$\Rightarrow 0.5N_P \text{ for large } k$$

Rescheduled Montgomery Multipliers (RMM)

- Digit multiplication for granularity
- Opportunistically defer T₁ computations
- Avoid unnecessary computations: Q₀ only
- Final sum $T_1 + U_1 + \text{ones_detect}(T_0)$
- Multiple digit products in parallel
- Vertically-biased accumulation to minimize carry propagation

RMM (2, 1) Schedule

		A[0]>	×B[0]	T[1:0]		0
	A[0]>	×B[1]		T[2:1]	T[0]	1
	A[1]>	×B[0]		T[2:1]		2
A[1]>	×B[1]			T[3:2]	T[1:0]	3
		T[0]×	(M'[0]	Q[1:0]	T[3:0]	4
	T[0]×	M'[1]		Q[2:1]	Q[0]	5
	T[1]×	(0]'M		Q[2:1]		6
		Q[0]>	×M[0]	U[1:0]	Q[1:0]	7
	Q[0]>	<m[1]< td=""><td></td><td>U[2:1]</td><td>U[0]</td><td>8</td></m[1]<>		U[2:1]	U[0]	8
	Q[1]>	×M[0]		U[2:1]		9
Q[1]>	×M[1]			U[3:2]	U[1:0]	10
					U[3:0]	

RMM (2, 2) Schedule

A[0]×B[0] A[0]×B[1]	T[2:0]	0
A[1]×B[0] A[1]×B[1]	T[3:1] <i>T[0]</i>	1
T[0]×M'[0] T[0]×M'[1]	Q[1:0] <i>T[3:0]</i>	2
T[1]×M'[0]	Q[1] <i>Q[0]</i>	3
Q[0]×M[0] Q[0]×M[1]	U[2:0] <i>Q[1:0]</i>	4
Q[1]×M[0] Q[1]×M[1]	U[3:1] <i>U[0]</i>	5
	U[3:0]	

RMM (2, 1) and (2, 2) Pipelines

September 4, 2023

ARITH2023

Comparisons

- Previous serial Montgomery architectures
 - Eberle digit-digit serial
 - Großschädl bit-word serial
 - Tenca bit-digit serial
- Rescheduled Montgomery Multiplier
- Other approaches
 - Basic synthesized multipliers
 - Full directly-realized Montgomery designs
 - McIvor full-word pipelined multiplier and ECC
 Processor

Serial Montgomery Multiplier Results: Eberle, Großschädl, Tenca & Koç

Design	Area (k μm²)	Latency (ns)	A·L Product
Eberle digit-digit, <i>d</i> = 8	12.5	2,724.0	33.95
Eberle digit-digit, <i>d</i> = 16	14.1	1,162.5	16.42
Eberle digit-digit, <i>d</i> = 32	19.6	513.3	10.06
Großschädl bit-word, d = 8	19.9	236.5	4.72
Großschädl bit-word, <i>d</i> = 16	20.1	227.7	4.58
Großschädl bit-word, <i>d</i> = 32	20.8	219.8	4.56
Tenca & Koç bit-digit <i>, d</i> = 8	21.3	1,169.5	24.95
Tenca & Koç bit-digit <i>, d</i> = 16	18.5	1,294.5	23.89
Tenca & Koç bit-digit <i>, d</i> = 32	18.7	1,485.9	27.72

Rescheduled Montgomery Multiplier Builds and Results

# Digits <i>k</i>	# Bits/Digit <i>d</i>	# Digit Multipliers <i>m</i>	Area Range (k μm²)	Latency Range (ns)	A·L Range
2	128	<u>1</u> , 2	106 - 188	22.2 – 33.3	3.52 – 4.18
3	86	1, 2, <u>3</u>	66 - 146	24.0 - 55.1	3.51 – 3.69
4	64	2, 3, <u>4</u> , 5	77 – 145	24.8 - 47.8	3.40 – 3.67
5	52	4, <u>5</u> , 6	116 - 163	29.1 – 37.2	3.61 – 4.33
6	43	5, 6, 7, 8, <u>9</u> , 10	110 - 152	23.5 - 40.2	3.44 – 4.44
7	37	6, 7, 8, 9, <u>10</u> , 11	113 – 142	25.6 - 41.2	3.62 – 4.72
8	32	8, 9, 10, 11, 12, <u>13</u> , 14	114 - 142	26.3 - 38.8	3.52 – 4.42

Latency versus Area: Serial and RMM

Overall Latency versus Area

Conclusions

- First order estimate with "standard" multipliers of various sizes is idealized
- Only full direct parallel and pipelined architectures are faster, at high die area cost
- RMMs have better performance than McIvor in only 25% (or less) area
- RMM max size 7× serialized architectures but one to two orders of magnitude better latency
- RMMs do not do repeated bit or digit Montgomery reductions—reduction saved for the end

Conclusions

- RMMs best A·L product of any practical Montgomery multipliers that were implemented
- RMM (4, 4) versus (2, 1) incurs 14% area cost for speedup = 1.18

- Reduced Q_0 computation helps

 Montgomery optimizations and overlapping products provide small but significant performance benefits