EFFICIENT ADDITIONS AND MONTGOMERY REDUCTIONS OF LARGE INTEGERS FOR SIMD

Pengchang REN

INTRODUCTION

Large prime field arithmetic (e.g. 511bit) is used by many post-quantum cryptography.

We want to optimize for ARM and x86.

We want to use SIMD for optimization.

SIMD INSTRUCTION LATENCY COMPARISON

	Tigerlake [1]		A64FX [2]	
Instruction set	x64	AVX-512	A64	SVE
Vector length	-	512 bit	-	512 bit
Integer multiplication support	~64-bit	~52-bit	~64-bit	~64-bit
Addition latency	1 cycle	1 cycle	1 cycle	4 cycles
Integer multiplication latency (Input size ->Output size)	3 cycles 64-bit->128-bit	4 cycles 52-bit->52-bit	5 cycles 64-bit->64-bit	9 cycles 64-bit->64-bit
Table lookup latency	-	3 cycles	-	6 cycles

[1] A.Fog, "Instructiontables:Listofinstructionlatencies, throughputs and micro-operation breakdowns for Intel, AMD and VIA CPUs (2012),"

[2] A64FX Microarchitecture Manual, Fujitsu, 2022, revision 1.8.1.

High instruction latency even for the easiest type of instruction

WHAT WE DID

Proposal 1: A SIMD addition algorithm for SVE

Proposal 2: An optimized algorithm for Montgomery reduction for SIMD by reducing data dependency

Proposal 3: A Montgomery reduction algorithm for specific prime field to utilize Karatsuba method

PROPOSAL 1 LARGE INTEGER ADDITION FOR SVE

ADD WITH CARRY (1)

• E.g. Calculating 2023 + 6789

2 0 2 3 + 6 7 8 9

• Add-with-carry: $2 + 6 + 0 \rightarrow 08$

More instructions and dependency

CARRY SELECT ADDER[3]

- A hardware implementation of addition in parallel.
- How to select efficiently?
- Our idea: select it by a smaller addition (Explained in next page).

[3] Bedrij, O. J. (1962). Carry-select adder. *IRE Transactions on Electronic Computers*, (3), 340-346.

	16-bit addition					
		0000	1111	1111	1111	
	+	0000	0000	1111	0000	
	C _{in} =0	00000	01111	1 1110	0 1111	
	C _{in} =1	0 0001	10000	1 1111	10000	
			:			
	Select	????	????	????	????	
	K					
In hardware: Select by carry- lookahead						

OUR IMPLEMENTATION (1)

- How to select? Calculate a smaller addition
- Conversion:
 - Case N: $C_{out} = 0$
 - Case P: $C_{out} = C_{in}$
 - Case G: $C_{out} = 1$

16-bit addition					
	0000	1111			
+	0000	0000	1111	0000	
C _{in} =0	00000	01111	1 1110	<mark>0</mark> 1111	
C _{in} =1	00001	10000	1 1111	10000	
Case	<mark>N</mark>	<mark>P</mark> -	G .	P	
Select	????	????	????	????	

OUR IMPLEMENTATION (2)

- How to select? Calculate a smaller addition
- Conversion:
 - Case N: $C_{out} = 0 \rightarrow 0 + 0$
 - Case P: $C_{out} = C_{in} \rightarrow 1 + 0$
 - Case G: $C_{out} = 1 \rightarrow 1 + 1$

16-bit addition					
	0000	1111	1111	1111	
+	0000	0000	1111	0000	
C _{in} =0	00000	01111	1 1110	01111	
C _{in} =1	00001	10000	1 1111	10000	
Case	<mark>N</mark> -	P -	<mark>G</mark> .	e P	
Select	????	????	????	????	
					Cor
					Iver
	1	-bit addi	tion		Sior
	4				ת ⁻ ר
a_i		0			N
bi	+	0			

13

OUR IMPLEMENTATION (3)

- How to select? Calculate a smaller addition
- Conversion:
 - Case N: $C_{out} = 0 \rightarrow 0 + 0$
 - Case P: $C_{out} = C_{in} \rightarrow 1 + 0$
 - Case G: $C_{out} = 1 \rightarrow 1 + 1$

16-bit addition					
	0000	1111	1111	1111	
+	0000:	0000	1111	0000	
C _{in} =0	00000	01111	1 1110	0 1111	
C _{in} =1	00001	10000	1 1111	10000	
Case	<mark>N</mark> :	P -	<mark>G</mark> .	. P	
Select	????	????	????	????	
					Cor
					Iver
	4	-bit addi	tion		sion
a_i		0	<mark>1</mark>	1 <mark>1</mark>	
b_i	+	0	0	<mark>0</mark>	
Sum	(S_i)	1	0 () 1	

OUR IMPLEMENTATION HOW WE CONVERT

• 64-bit example.

	Case <mark>N</mark>	Case <mark>P</mark>	Case <mark>G</mark>
A	0	0	1
В	-2	-1	-1
D = A + B	-2	-1	0
G = popcnt(D)	63	64	0
m = D < A	False	False	True
t = mADD(G, 65, m)	<mark>63 + 0</mark>	<mark>64 + 0</mark>	0 + 65
p	191	191	191
s = t + p	254	255	256

If $m = True: t \leftarrow G + 65$ Else: $t \leftarrow G$

18

GENERIC MONTGOMERY REDUCTION

3×6

4×6

3×5

4×5

5×5

3×7

4×7

3×9

exp

3×8

4×8

3×1 3×2 3×3 1 4×2 4×3

5×3

3×4

4×4

5×4

MODULAR MULTIPLICATION

GENERIC MONTGOMERY REDUCTION[4]

 $\begin{array}{l} T < pR \\ p < R = r^n = 2^{\omega n} \\ T^{(i)} \equiv Tr^{-i} \bmod p \end{array}$

[4] P. L. Montgomery, "Modular multiplication without trial division," *Mathematics of computation*, vol. 44, no.
170, pp. 519–521, 1985.

GENERIC MONTGOMERY REDUCTION

 $\begin{array}{l} T < pR \\ p < R = r^n = 2^{\omega n} \\ T^{(i)} \equiv Tr^{-i} \bmod p \end{array}$

Algorithm ExistingGenericRedc: Generic Montgomery reduction

Input: T < pR, where $p < 2^{\omega n}, r = 2^{\omega}, R = 2^{\omega n}$, r^{-1} , R^{-1} are positive integers such that $rr^{-1} \equiv 1 \mod p, RR^{-1} \equiv 1 \mod p$, and $p' \leftarrow \frac{rr^{-1}-1}{\tilde{r}}$ **Output:** $REDC(T) = TR^{-1} \mod p$ 1 $T^{(0)} \leftarrow T$ 2 for i = 1 to n do $Q \leftarrow T^{(i-1)}p' \bmod r$ 3 $\longleftarrow T^{(i)} \leftarrow T^{(i-1)}r^{-1} \mod p$ $T^{(i)} \leftarrow (T^{(i-1)} + Qp)/r$ 5 end if $T^{(n)} > p$ then 6 $T^{(n)} \leftarrow T^{(n)} - p$ \leftarrow REDC $(T) = T^{(i)} = Tr^{-n} \mod p$ 7 8 return $T^{(n)}$

GENERIC MONTGOMERY REDUCTION DEPENDENCY

 $\begin{array}{l} T < pR \\ p < R = r^n = 2^{\omega n} \\ T^{(i)} \equiv Tr^{-i} \bmod p \end{array}$

Algorithm ExistingGenericRedc: Generic Montgomery reduction

Input: T < pR, where $p < 2^{\omega n}, r = 2^{\omega}, R = 2^{\omega n}$, r^{-1} , R^{-1} are positive integers such that $rr^{-1} \equiv 1 \mod p, RR^{-1} \equiv 1 \mod p$, and $p' \leftarrow \frac{rr^{-1}-1}{r}$ **Output:** $REDC(T) = TR^{-1} \mod p$ 1 $T^{(0)} \leftarrow T$ 2 for i = 1 to n do 3 $| Q \leftarrow T^{(i-1)}p' \mod r$ $T^{(i-1)} \to Q$ 4 $T^{(i)} \leftarrow (T^{(i-1)} + Qp)/r \quad Q \to T^{(i)}$ 5 end 6 if $T^{(n)} > p$ then Data dependency 7 | $T^{(n)} \leftarrow T^{(n)} - p$ $Q \rightarrow T^{(1)} \rightarrow Q \rightarrow T^{(2)} \rightarrow \cdots \rightarrow Q \rightarrow T^{(n)}$ 8 return $T^{(n)}$

23

Just an illustration, not real ratio! Additions are omitted for simplicity

Just an illustration, not real ratio! Additions are omitted for simplicity

OUR PROPOSED REDC(T) WITH LESS DEPENDENCY

Since

$$T = \sum_{i=0}^{n-1} t_i r^i , t_i < r \operatorname{except} t_{n-1}$$

Then

$$REDC(T) \equiv R^{-1} \sum_{i=0}^{n-1} t_i r^i$$
$$\equiv \sum_{i=0}^{n-1} t_i r^{i-n} \pmod{p} \quad \text{Dependency free}$$

However, we want REDC(T) < p

OUR PROPOSED REDC(T) - CONTINUE

Since

$$T = \sum_{i=0}^{n-1} t_i r^i , t_i < r \operatorname{except} t_{n-1}$$

Then

$$REDC(T) \equiv R^{-1} \sum_{i=0}^{n-1} t_i r^i \qquad R = r^n \qquad \begin{array}{c} \text{Can be reduced} \\ \text{to } [0,p) \text{ easily} \end{array}$$
$$\equiv \sum_{i=0}^{n-1} t_i r^{i-n} \qquad < npr \\ \equiv r^{-2} \sum_{i=0}^{n-1} t_i r^{i-n+2} \pmod{p} < 3p \end{array}$$

OUR PROPOSED REDC(T) ILLUSTRATION

Naïve

Proposed method

Last two iterations are the same

Both steps have enough parallelism

REDUCTION FOR MONTGOMERY-FRIENDLY PRIME

3×5

4×5

5×5

3×4

4×4

5×4

3×6

4×6

3×7

4×7

3×9

Q×4

3×8

8×4

3×1 3×2 3×3 1 4×2 4×3

5×3

MONTGOMERY REDUCTION SPECIAL CASE[5]

[5]. A. Faz-Herná ndez, J. Lo pez, E. Ochoa-Jimé nez, and F. Rodr iguez- Henr iquez, "A faster software implementation of the supersingular isogeny Diffie-Hellman key exchange protocol," *IEEE Transactions on Computers*, vol. 67, no. 11, pp. 1622–1636, 2017.

Algorithm ExistingGenericRedc: Generic Montgomery reduction Input: T < pR, where $p < 2^{\omega n}, r = 2^{\omega}, R = 2^{\omega n}$, r^{-1} , R^{-1} are positive integers such that $rr^{-1} \equiv 1 \mod p, RR^{-1} \equiv 1 \mod p$, and $p' \leftarrow \frac{rr^{-1}-1}{n} \longleftarrow p' = 1$ if $p \equiv -1 \mod r$ **Output:** $REDC(T) = TR^{-1} \mod p$ 1 $T^{(0)} \leftarrow T$ 2 for i = 1 to n do 3 | $Q \leftarrow T^{(i-1)}p' \mod r \longleftarrow Q = T^{(i-1)} \mod r$ 4 $T^{(i)} \leftarrow (T^{(i-1)} + Qp)/r$ 5 end 6 if $T^{(n)} > p$ then Replace p with p+1 7 | $T^{(n)} \leftarrow T^{(n)} - p$ 8 return $T^{(n)}$

MONTGOMERY REDUCTION SPECIAL CASE[5]

Algorithm ExistingSpecificRedc: Montgomery reduction with λ -Montgomery-friendly modulus [27]

Input: $p < 2^{\omega n}, r = 2^{\omega}, R = 2^{\omega n}, T < pR, 1 < m \leq 2^{\omega n}$ λ such that $p \mod r^m \equiv -1$, $\lambda_0 \leftarrow |\omega n/m|$, $\lambda'_0 \leftarrow (\omega \cdot n) \mod m$, and $M \leftarrow (p+1)/2^{\lambda \cdot \omega}$. **Output:** $TR^{-1} \mod p$ 1 $T^{(0)} \leftarrow T$ 2 for $i \leftarrow 1$ to λ_0 do $\mathbf{3} \quad | \quad Q \leftarrow T^{(i-1)} \bmod 2^{m \cdot \omega}$ 4 $T^{(i)} \leftarrow |(T^{(i-1)} + 2^{\lambda \cdot \omega} Q \cdot M)/2^{m \cdot \omega}|$ 5 end Q by M large multiplication, we want 6 if $\lambda'_0 \neq 0$ then To accelerate with Karatsuba method, not easy 7 | $Q \leftarrow T^{(\lambda_0)} \mod 2^{\lambda'_0 \cdot \omega}$ 8 $T^{(\lambda_0+1)} \leftarrow \left| (T^{(\lambda_0)} + 2^{\lambda \cdot \omega} Q \cdot M) / 2^{\lambda'_0 \cdot \omega} \right|$ 9 end 10 if $T^{(\lambda_0+1)} > p$ then 11 $T^{(\lambda_0+1)} \leftarrow T^{(\lambda_0+1)} - p$ 12 end 13 return $T^{(\lambda_0+1)}$ 33

MONTGOMERY-FRIENDLY REDUCTION – CALCULATION FLOW

E.g.
$$p_{503} = 2^{250} \times 3^{159} - 1, r = 2^{64}, F = 3^{159} (4 \text{ word})$$

Special case: $p = 2^{l}F - 1$ $F \approx 2^{l}$

MONTGOMERY-FRIENDLY REDUCTION – CALCULATION FLOW

E.g.
$$p_{503} = 2^{250} \times 3^{159} - 1, r = 2^{64},$$

 $F = 3^{159}$

MONTGOMERY-FRIENDLY REDUCTION PROPOSED METHOD

CTIDH-511 WITH PROPOSED METHOD ON SVE

	ARM64[6] Runtime (cycles)	SVE Runtime (cycles)	Speedup
Addition	16.07	13.72 Proposal 1	1.17x
Montgomery Multiplication	406.98	258.96 Proposal 2	1.57x
CTIDH[7] Action	316,308,640	242,948,411 Proposal 1+2	1.30x

Benchmarked with A64FX@2.20GHz on Wisteria BDEC/01 (Odyssey) at U-Tokyo

[6]. Jalali, A. et al. (2019). Towards Optimized and Constant-Time CSIDH on Embedded Devices. In: Polian, I., Stöttinger, M. (eds) Constructive Side-Channel Analysis and Secure Design. COSADE 2019. Lecture Notes in Computer Science, vol 11421. Springer, Cham.

[7]. Banegas, Gustavo, et al. (2021). CTIDH: faster constant-time CSIDH. *IACR Transactions on Cryptographic Hardware and Embedded Systems*

Using 511-bit general prime

CSIDH-511 WITH PROPOSED METHOD ON AVX-512

Calls multiplication directly

Specially designed squaring algorithm

Runtime	x64[8]	AVX-512 by [9]	AVX-512
	(cycles)	(cycles)	Ours with Proposal 2
Montgomery Squaring	262	142	104
2-packed	1.00x	1.85x	2.51x
Montgomery Multiplication	258	145	131
2-packed	1.00x	1.78x	1.97x
CSIDH[10] Action	132,051,574	83,099,556	74,491,118
	1.00x	1.59x	1.77x

Benchmarked with i7-1165G7@2701MHz

[8]. D. Cervantes-V azquez, et. al., "Stronger and faster side-channel protections for CSIDH," in LATINCRYPT 2019
[9]. H. Cheng, et.al, "Batching CSIDH group actions using AVX-512," IACR TCHES, vol. 2021
[10]. W. Castryck, et. al., "CSIDH: An efficient post-quantum commutative group action," in ASIACRYPT 2018

512-BIT SIMD ADD-WITH-CARRY COMPARISON

Efficient Mask -> SVE or GPR not available,

[11] A. Yee, "Integer addition and carryout," http://www.numberworld.org/ y- cruncher/internals/addition.html#ks add, 2019. Using 503-bit special prime

SIKEP503 WITH PROPOSED REDUCTION

Highly optimized ARM64 assembly Implementation. Worth to compared although SIKE has broken

	SIDHv3.5[12] Time (cycles)	New Reduction Proposal 3 Time (cycles)	Speedup
Reduction	196.84	156.48	1.26x
Keygen	36,749,182	35,204,915	1.04x
Encapsulation	60,642,713	56,449,034	1.07x
Decapsulation	65,017,001	60,901,455	1.07x

Benchmarked with A64FX@2.20GHz on Wisteria BDEC/01 (Odyssey)

CONCLUSION

- A parallel algorithm for large integer addition using SIMD is proposed by converting 512-bit addition to 64-bit to calculate carries
- A parallel algorithm for Montgomery reduction using SIMD is proposed by breaking dependency chains
- An optimized reduction algorithm for SIKE-like primes is proposed by using Karatsuba method
- 30% speedup for CTIDH on SVE
- 10% speedup for CSIDH on AVX-512
- 27% speedup for the Montgomery reduction of SIKE

