
EFFICIENT ADDITIONS AND
MONTGOMERY REDUCTIONS OF LARGE

INTEGERS FOR SIMD

Pengchang REN

1

INTRODUCTION

Large prime field arithmetic (e.g. 511-
bit) is used by many post-quantum
cryptography.

We want to optimize for ARM and x86.

We want to use SIMD for optimization.

2

SIMD INSTRUCTION LATENCY
COMPARISON

Tigerlake [1] A64FX [2]

Instruction set x64 AVX-512 A64 SVE

Vector length - 512 bit - 512 bit

Integer multiplication support ~64-bit ~52-bit ~64-bit ~64-bit

Addition latency 1 cycle 1 cycle 1 cycle 4 cycles

Integer multiplication latency

(Input size ->Output size)

3 cycles

64-bit->128-bit

4 cycles

52-bit->52-bit

5 cycles

64-bit->64-bit

9 cycles

64-bit->64-bit

Table lookup latency - 3 cycles - 6 cycles

High instruction latency even

for the easiest type of instruction
[1] A.Fog,“Instructiontables:Listofinstructionlatencies,throughputsand micro-operation breakdowns for Intel,
AMD and VIA CPUs (2012),”
 [2] A64FX Microarchitecture Manual, Fujitsu, 2022, revision 1.8.1.

3

WHAT WE DID

Proposal 1: A SIMD addition algorithm for SVE

Proposal 2: An optimized algorithm for Montgomery

reduction for SIMD by reducing data dependency

Proposal 3: A Montgomery reduction algorithm for

specific prime field to utilize Karatsuba method

4

PROPOSAL 1
LARGE INTEGER ADDITION FOR SVE

5

ADD WITH CARRY (1)

• E.g. Calculating 2023 + 6789
2 0 2 3

+ 6 7 8 9

6

ADD WITH CARRY (2)

• E.g. Calculating 2023 + 6789

• Addition: 3 + 9 → 12

1

2 0 2 3

+ 6 7 8 9

2

Carry

Sum

7

ADD WITH CARRY (3)

• E.g. Calculating 2023 + 6789

• Addition: 3 + 9 → 12

• Add-with-carry: 2 + 8 + 1 → 11

1 1

2 0 2 3

+ 6 7 8 9

1 2

Carry

Sum

Carry-In (Cin) Carry-Out (Cout)

8

ADD WITH CARRY (4)

• E.g. Calculating 2023 + 6789

• Addition: 3 + 9 → 12

• Add-with-carry: 2 + 8 + 1 → 11

• Add-with-carry: 0 + 7 + 1 → 08

• Add-with-carry: 2 + 6 + 0 → 08

0 0 1 1

2 0 2 3

+ 6 7 8 9

0 8 8 1 2

Carry

Sum

Carry-In (Cin) Carry-Out (Cout)

9

LARGE INTEGER ADDITION

• SISD

• Addition: 3 + 9 → 12

• Add-with-carry: 2 + 8 + 1 → 11

• Add-with-carry: 0 + 7 + 1 → 08

• Add-with-carry: 2 + 6 + 0 → 08

0 0 1 1

2 0 2 3

+ 6 7 8 9

0 8 8 1 2

• SIMD, naïve way

• Addition: 2 0 2 3 + 6 7|8|9 → 08|07|10|12

• Addition: 8 7 0 2 + 0 1|1|0 → 08|08|01|02

• Addition: 8 8 1 2 + 0 0|0|0 → 08|08|01|02

• Addition: 8 8 1 2 + 0 0|0|0 → 08|08|01|02

Additional instruction required

More instructions and dependency
10

CARRY SELECT ADDER[3]

• A hardware implementation of addition in

parallel.

• How to select efficiently?

• Our idea: select it by a smaller addition

 (Explained in next page).

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Select ???? ???? ???? ????

[3] Bedrij, O. J. (1962). Carry-select adder. IRE

Transactions on Electronic Computers, (3), 340-346.

In hardware: Select by carry-

lookahead

11

OUR IMPLEMENTATION (1)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛

• Case G: 𝐶𝑜𝑢𝑡 = 1

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select ???? ???? ???? ????

12

OUR IMPLEMENTATION (2)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select ???? ???? ???? ????

4-bit addition

𝑎𝑖 0

𝑏𝑖 + 0

C
o
n
v
e
rs

io
n

13

OUR IMPLEMENTATION (3)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select ???? ???? ???? ????

4-bit addition

𝑎𝑖 0 1 1 1

𝑏𝑖 + 0 0 1 0

Sum (𝑆𝑖) 1 0 0 1

C
o
n
v
e
rs

io
n

14

OUR IMPLEMENTATION (4)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

• Selection:

• 𝑆𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝐶𝑖𝑛 by definition, so 𝐶𝑖𝑛 = 𝑆𝑖 − 𝑎𝑖 − 𝑏𝑖

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select 0001 ???? ???? ????

4-bit addition

𝑎𝑖 0 1 1 1

𝑏𝑖 + 0 0 1 0

Sum (𝑆𝑖) 1 0 0 1

Cin=0 00

Cin=1 01

S
e
le

c
ti
o
n

C
o
n
v
e
rs

io
n

15

OUR IMPLEMENTATION (5)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

• Selection:

• 𝑆𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝐶𝑖𝑛 by definition, so 𝐶𝑖𝑛 = 𝑆𝑖 − 𝑎𝑖 − 𝑏𝑖

• No dependency between words.

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select 0001 0000 1110 1111

4-bit addition

𝑎𝑖 0 1 1 1

𝑏𝑖 + 0 0 1 0

Sum (𝑆𝑖) 1 0 0 1

Cin=0 00 01 10 01

Cin=1 01 10 11 10

S
e
le

c
ti
o
n

C
o
n
v
e
rs

io
n

16

REAL IMPLEMENTATION
ON SVE

• How to convert with SVE? 64-bit example.

512-bit addition

8-bit smaller addition for each 64-bit word

One 64-bit addition

8-bit

True/False

8-bit

8-bit … 8-bit

64-bit ・・・ 64-bit

・・・ True/False

Conversion

・・・ ResultResult

Selection

Table lookup

Selector

17

OUR IMPLEMENTATION
HOW WE CONVERT

• 64-bit example.

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select 0001 0000 1110 1111

Case N Case P Case G

𝐴 0 0 1

𝐵 −2 −1 −1

𝐷 = 𝐴 + 𝐵 −2 −1 0

𝐺 = 𝑝𝑜𝑝𝑐𝑛𝑡 𝐷 63 64 0

𝑚 = 𝐷 < 𝐴 False False True

𝑡 = 𝑚𝐴𝐷𝐷(𝐺, 65, 𝑚) 63 + 0 64 + 0 0 + 65

𝑝 191 191 191

𝑠 = 𝑡 + 𝑝 254 255 256
18

𝐼𝑓 𝑚 = 𝑇𝑟𝑢𝑒: 𝑡 ← 𝐺 + 65
𝐸𝑙𝑠𝑒: 𝑡 ← 𝐺

GENERIC MONTGOMERY
REDUCTION

19

MODULAR MULTIPLICATION

• Naïve

• Costly division.

𝐴

𝐵

𝐴𝐵

𝐴𝐵 𝑚𝑜𝑑 𝑝

Division

ሚ𝐴

෨𝐵

ሚ𝐴 ෨𝐵
𝐴

𝐵

𝐴𝐵 𝑚𝑜𝑑 𝑝

෪𝐴𝐵𝑚𝑜𝑑 𝑝

𝑅2 𝑚𝑜𝑑 𝑝

𝑅2 𝑚𝑜𝑑 𝑝

REDC

REDC

Montgomery multiplication

Using REDC (next page).

No division

20

For the selected R

Calculate this

GENERIC
MONTGOMERY
REDUCTION[4]

Word length 𝜔

[4] P. L. Montgomery, “Modular
multiplication without trial division,”
Mathematics of computation, vol. 44, no.
170, pp. 519–521, 1985. 21

𝑇 < 𝑝𝑅
𝑝 < 𝑅 = 𝑟𝑛 = 2𝜔𝑛

𝑇(𝑖) ≡ 𝑇𝑟−𝑖 𝑚𝑜𝑑 𝑝

𝑇(𝑖) ← 𝑇 𝑖−1 𝑟−1 𝑚𝑜𝑑 𝑝

𝑅𝐸𝐷𝐶 𝑇 = 𝑇(𝑖) = 𝑇𝑟−𝑛 𝑚𝑜𝑑 𝑝

GENERIC
MONTGOMERY

REDUCTION

22

𝑇 < 𝑝𝑅
𝑝 < 𝑅 = 𝑟𝑛 = 2𝜔𝑛

𝑇(𝑖) ≡ 𝑇𝑟−𝑖 𝑚𝑜𝑑 𝑝

GENERIC
MONTGOMERY

REDUCTION
DEPENDENCY

Data dependency

𝑄 → 𝑇(1) → 𝑄 → 𝑇(2) → ⋯ → 𝑄 → 𝑇(𝑛)

23

𝑄 → 𝑇(𝑖)

𝑇(𝑖−1) → 𝑄

𝑇 < 𝑝𝑅
𝑝 < 𝑅 = 𝑟𝑛 = 2𝜔𝑛

𝑇(𝑖) ≡ 𝑇𝑟−𝑖 𝑚𝑜𝑑 𝑝

PROBLEM OF DEPENDENCY

Just an illustration, not real ratio!

Additions are omitted for simplicity

Time

x64/A64

Enough parallelism

AVX-512/SVE

Naive

24

𝑄 → 𝑇(𝑖)

𝑇(𝑖−1) → 𝑄

PROBLEM OF DEPENDENCY

Just an illustration, not real ratio!

Additions are omitted for simplicity

Time

x64/A64

Less parallelism

Due to less instruction needed

AVX-512/SVE

Naive

25

𝑄 → 𝑇(𝑖)

𝑇(𝑖−1) → 𝑄

PROBLEM OF DEPENDENCY

Just an illustration, not real ratio!

Additions are omitted for simplicity

Time

x64/A64

More instruction needed

than x64/A64

AVX-512/SVE

Naive

26

𝑄 → 𝑇(𝑖)

𝑇 𝑖−1 → 𝑄

Since

𝑇 =
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖 , 𝑡𝑖 < 𝑟 except 𝑡𝑛−1

Then

𝑅𝐸𝐷𝐶 𝑇 ≡ 𝑅−1
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖

≡
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖−𝑛 (𝑚𝑜𝑑 𝑝)

However, we want 𝑅𝐸𝐷𝐶 𝑇 < 𝑝

OUR PROPOSED REDC(T) WITH LESS
DEPENDENCY

Dependency free

27

Since

𝑇 =
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖 , 𝑡𝑖 < 𝑟 except 𝑡𝑛−1

Then

𝑅𝐸𝐷𝐶 𝑇 ≡ 𝑅−1
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖

≡
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖−𝑛 < 𝑛𝑝𝑟

≡ 𝑟−2
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖−𝑛+2 𝑚𝑜𝑑 𝑝 < 3𝑝

OUR PROPOSED REDC(T) -
CONTINUE

Can be reduced

to [0, 𝑝) easily

28

𝑅 = 𝑟𝑛

OUR PROPOSED REDC(T)
ILLUSTRATION

)/𝑟2 ≡ (() (𝑚𝑜𝑑 𝑝)

Last two iterations are the same
29

Naïve Proposed method

HOW IT WORKS

Proposal 2

x64/A64

AVX-512/SVE

Naive

Both steps have enough parallelism 30

REDUCTION FOR
MONTGOMERY-FRIENDLY PRIME

31

MONTGOMERY
REDUCTION

SPECIAL
CASE[5]

𝑝′ = 1if 𝑝 ≡ −1 𝑚𝑜𝑑 𝑟

𝑄 = 𝑇(𝑖−1) 𝑚𝑜𝑑 𝑟

Replace p with p+1

[5]. A. Faz-Herna ́ndez, J. Lo ́pez, E. Ochoa-
Jime ́nez, and F. Rodr ́ıguez- Henr ́ıquez, “A faster
software implementation of the supersingular
isogeny Diffie-Hellman key exchange protocol,”
IEEE Transactions on Computers, vol. 67, no. 11,
pp. 1622–1636, 2017.

32

MONTGOMERY
REDUCTION

SPECIAL
CASE[5]

𝑝′ = 1if 𝑝 ≡ −1 𝑚𝑜𝑑 𝑟

𝑄 = 𝑇(𝑖−1) 𝑚𝑜𝑑 𝑟

Replace p with p+1

[]….

Q y M g p , w w

T w h K h , y

33

MONTGOMERY-FRIENDLY
REDUCTION – CALCULATION FLOW

Special case:

𝑝 = 2𝑙𝐹 − 1
𝐹 ≈ 2𝑙

E.g. 𝑝503 = 2250 × 3159 − 1, 𝑟 = 264,
𝐹 = 3159(4 word)

34

MONTGOMERY-FRIENDLY
REDUCTION – CALCULATION FLOW

4×2 multiplication,

E.g. 𝑝503 = 2250 × 3159 − 1, 𝑟 = 264,
𝐹 = 3159 35

Q2, Q1, Q0

F

3 word

4 word×4×3 multiplication,

MO T OMERY FRIE DLY
REDU TIO RO O ED METHOD

𝑄3 is only dependent on 𝑄0

Can be calculated ahead with one multiplication.

4×4 multiplication,

Can use Karatsuba to accelerate.

𝑄3 = 𝑇3 + 𝐹 𝑚𝑜𝑑 𝑟 𝑄0 𝑚𝑜𝑑 𝑟

E.g. 𝑝503 = 2250 × 3159 − 1, 𝑟 = 264,
𝐹 = 3159 36

RESULTS

37

CTIDH-511 WITH PROPOSED METHOD
ON SVE

ARM64[6]

Runtime

(cycles)

SVE

Runtime

(cycles)

Speedup

Addition 16.07 13.72

Proposal 1

1.17x

Montgomery Multiplication 406.98 258.96

Proposal 2

1.57x

CTIDH[7] Action 316,308,640 242,948,411

Proposal 1+2

1.30x

Benchmarked with A64FX@2.20GHz on Wisteria BDEC/01 (Odyssey) at U-Tokyo

[6]. Jalali, A. et al. (2019). Towards Optimized and Constant-Time CSIDH on Embedded Devices. In: Polian, I., Stöttinger, M. (eds)

Constructive Side-Channel Analysis and Secure Design. COSADE 2019. Lecture Notes in Computer Science, vol 11421.

Springer, Cham.

[7]. Banegas, Gustavo, et al. (2021). CTIDH: faster constant-time CSIDH. IACR Transactions on Cryptographic Hardware and

Embedded Systems

Using 511-bit general prime

38

CSIDH-511 WITH PROPOSED METHOD
ON AVX-512

Benchmarked with i7-1165G7@2701MHz

[8]. D. V ́ zq z, . ., “ g f h p f IDH,” LATI RY T 2 9

[9]. H. h g, . , “B h g IDH g p g AVX 5 2,” IA R T HE , . 2 2
[10]. W. Castryck, . ., “CSIDH: An efficient post-quantum commutative group action,” in ASIACRYPT 2018

Runtime x64[8]

 (cycles)

AVX-512 by [9]

(cycles)

AVX-512

Ours with Proposal 2

Montgomery Squaring

2-packed

262

1.00x

142

1.85x

104

2.51x

Montgomery Multiplication

2-packed

258

1.00x

145

1.78x

131

1.97x

CSIDH[10] Action 132,051,574

1.00x

83,099,556

1.59x

74,491,118

1.77x

Calls multiplication directly
Specially designed

squaring algorithm

Using 511-bit general prime

39

512-BIT SIMD ADD-WITH-CARRY
COMPARISON

SVE AVX-512

Kogge-Stone

Vector Addition

(cycles)

55.28 4.16 [11]

Proposal 1

(cycles)

42.90

1.29x

6.41

0.65x

[11] A. Yee, “Integer addition and carryout,”
http://www.numberworld.org/ y- cruncher/internals/addition.html#ks
add, 2019.

Efficient Mask -> SVE or GPR not available,

Mask->GPR available

8x64-bit->8x1-bit8x64-bit->8x8-bit

40

SIKEP503 WITH PROPOSED
REDUCTION

SIDHv3.5[12]

Time (cycles)

New Reduction

Proposal 3

Time (cycles)

Speedup

Reduction 196.84 156.48 1.26x

Keygen 36,749,182 35,204,915 1.04x

Encapsulation 60,642,713 56,449,034 1.07x

Decapsulation 65,017,001 60,901,455 1.07x

[2]. Microsoft, “PQCrypto-SIDH,” 2020. [Online]. Available: https://github. com/Microsoft/PQCrypto- SIDH

Benchmarked with A64FX@2.20GHz on Wisteria BDEC/01 (Odyssey)

Using 503-bit special prime

Highly optimized ARM64 assembly Implementation.

Worth to compared although SIKE has broken

41

CONCLUSION

• A parallel algorithm for large integer addition using SIMD is proposed

by converting 512-bit addition to 64-bit to calculate carries

• A parallel algorithm for Montgomery reduction using SIMD is proposed

by breaking dependency chains

• An optimized reduction algorithm for SIKE-like primes is proposed by

using Karatsuba method

• 30% speedup for CTIDH on SVE

• 10% speedup for CSIDH on AVX-512

• 27% speedup for the Montgomery reduction of SIKE
42

Q&A

43

	Slide 1: EFFICIENT additions and Montgomery reductions of large integers for simd
	Slide 2: introduction
	Slide 3: SIMD instruction latency comparison
	Slide 4: What we did
	Slide 5: Proposal 1 Large integer addition for sve
	Slide 6: Add with carry (1)
	Slide 7: Add with carry (2)
	Slide 8: Add with carry (3)
	Slide 9: Add with carry (4)
	Slide 10: Large integer addition
	Slide 11: Carry select adder[3]
	Slide 12: Our implementation (1)
	Slide 13: Our implementation (2)
	Slide 14: Our implementation (3)
	Slide 15: Our implementation (4)
	Slide 16: Our implementation (5)
	Slide 17: Real implementation on sve
	Slide 18: Our implementation How we convert
	Slide 19: Generic Montgomery reduction
	Slide 20: Modular multiplication
	Slide 21
	Slide 22
	Slide 23: GENERIC Montgomery reduction dependency
	Slide 24: Problem of dependency
	Slide 25: Problem of dependency
	Slide 26: Problem of dependency
	Slide 27: Our proposed redc(T) with less dependency
	Slide 28: Our proposed redc(T) - Continue
	Slide 29: Our proposed redc(T) illustration
	Slide 30: How it works
	Slide 31: reduction for Montgomery-friendly prime
	Slide 32: Montgomery reduction special case[5]
	Slide 33: Montgomery reduction special case[5]
	Slide 34: Montgomery-friendly reduction – calculation flow
	Slide 35: Montgomery-friendly reduction – calculation flow
	Slide 36: Montgomery-friendly reduction proposed method
	Slide 37: Results
	Slide 38: Ctidh-511 with proposed method on sve
	Slide 39: CSidh-511 with proposed method on avx-512
	Slide 40: 512-bit Simd add-with-carry comparison
	Slide 41: sikep503 with proposed reduction
	Slide 42: Conclusion
	Slide 43: Q&A

