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INTRODUCTION

Large prime field arithmetic (e.g. 511-
bit) is used by many post-quantum 
cryptography.

We want to optimize for ARM and x86.

We want to use SIMD for optimization.
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SIMD INSTRUCTION LATENCY 
COMPARISON

Tigerlake [1] A64FX [2]

Instruction set x64 AVX-512 A64 SVE

Vector length - 512 bit - 512 bit

Integer multiplication support ~64-bit ~52-bit ~64-bit ~64-bit

Addition latency 1 cycle 1 cycle 1 cycle 4 cycles

Integer multiplication latency

(Input size ->Output size)

3 cycles

64-bit->128-bit

4 cycles

52-bit->52-bit

5 cycles

64-bit->64-bit

9 cycles

64-bit->64-bit

Table lookup latency - 3 cycles - 6 cycles

High instruction latency even 

for the easiest type of instruction
[1] A.Fog,“Instructiontables:Listofinstructionlatencies,throughputsand micro-operation breakdowns for Intel, 
AMD and VIA CPUs (2012),”
 [2] A64FX Microarchitecture Manual, Fujitsu, 2022, revision 1.8.1. 
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WHAT WE DID

Proposal 1: A SIMD addition algorithm for SVE

Proposal 2: An optimized algorithm for Montgomery 

reduction for SIMD by reducing data dependency 

Proposal 3: A Montgomery reduction algorithm for 

specific prime field to utilize Karatsuba method
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PROPOSAL 1
LARGE INTEGER ADDITION FOR SVE
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ADD WITH CARRY (1)

• E.g. Calculating 2023 + 6789
2 0 2 3

+ 6 7 8 9
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ADD WITH CARRY (2)

• E.g. Calculating 2023 + 6789

• Addition: 3 + 9 → 12

1

2 0 2 3

+ 6 7 8 9

2

Carry

Sum
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ADD WITH CARRY (3)

• E.g. Calculating 2023 + 6789

• Addition: 3 + 9 → 12

• Add-with-carry:  2 + 8 + 1 → 11

1 1

2 0 2 3

+ 6 7 8 9

1 2

Carry

Sum

Carry-In (Cin) Carry-Out (Cout)
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ADD WITH CARRY (4)

• E.g. Calculating 2023 + 6789

• Addition: 3 + 9 → 12

• Add-with-carry:  2 + 8 + 1 → 11

• Add-with-carry:  0 + 7 + 1 → 08

• Add-with-carry:  2 + 6 + 0 → 08

0 0 1 1

2 0 2 3

+ 6 7 8 9

0 8 8 1 2

Carry

Sum

Carry-In (Cin) Carry-Out (Cout)
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LARGE INTEGER ADDITION

• SISD

• Addition: 3 + 9 → 12

• Add-with-carry:  2 + 8 + 1 → 11

• Add-with-carry:  0 + 7 + 1 → 08

• Add-with-carry:  2 + 6 + 0 → 08

0 0 1 1

2 0 2 3

+ 6 7 8 9

0 8 8 1 2

• SIMD, naïve way

• Addition: 2 0 2 3 + 6 7|8|9 → 08|07|10|12

• Addition: 8 7 0 2 + 0 1|1|0 → 08|08|01|02

• Addition: 8 8 1 2 + 0 0|0|0 → 08|08|01|02

• Addition: 8 8 1 2 + 0 0|0|0 → 08|08|01|02

Additional instruction required

More instructions and dependency
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CARRY SELECT ADDER[3]

• A hardware implementation of addition in 

parallel.

• How to select efficiently?

• Our idea: select it by a smaller addition

  (Explained in next page).

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Select ???? ???? ???? ????

[3] Bedrij, O. J. (1962). Carry-select adder. IRE 

Transactions on Electronic Computers, (3), 340-346.

In hardware: Select by carry-

lookahead
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OUR IMPLEMENTATION (1)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛

• Case G: 𝐶𝑜𝑢𝑡 = 1

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select ???? ???? ???? ????
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OUR IMPLEMENTATION (2)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select ???? ???? ???? ????

4-bit addition

𝑎𝑖 0

𝑏𝑖 + 0

C
o
n
v
e
rs

io
n
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OUR IMPLEMENTATION (3)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select ???? ???? ???? ????

4-bit addition

𝑎𝑖 0 1 1 1

𝑏𝑖 + 0 0 1 0

Sum (𝑆𝑖) 1 0 0 1

C
o
n
v
e
rs

io
n
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OUR IMPLEMENTATION (4)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

• Selection: 

• 𝑆𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝐶𝑖𝑛 by definition, so 𝐶𝑖𝑛 = 𝑆𝑖 − 𝑎𝑖 − 𝑏𝑖

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select 0001 ???? ???? ????

4-bit addition

𝑎𝑖 0 1 1 1

𝑏𝑖 + 0 0 1 0

Sum (𝑆𝑖) 1 0 0 1

Cin=0 00

Cin=1 01

S
e
le

c
ti
o
n

C
o
n
v
e
rs

io
n
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OUR IMPLEMENTATION (5)

• How to select? Calculate a smaller addition

• Conversion:

• Case N: 𝐶𝑜𝑢𝑡 = 0 → 0 + 0

• Case P: 𝐶𝑜𝑢𝑡 = 𝐶𝑖𝑛 → 1 + 0

• Case G: 𝐶𝑜𝑢𝑡 = 1 → 1 + 1

• Selection: 

• 𝑆𝑖 = 𝑎𝑖 + 𝑏𝑖 + 𝐶𝑖𝑛 by definition, so 𝐶𝑖𝑛 = 𝑆𝑖 − 𝑎𝑖 − 𝑏𝑖

• No dependency between words.

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select 0001 0000 1110 1111

4-bit addition

𝑎𝑖 0 1 1 1

𝑏𝑖 + 0 0 1 0

Sum (𝑆𝑖) 1 0 0 1

Cin=0 00 01 10 01

Cin=1 01 10 11 10

S
e
le

c
ti
o
n

C
o
n
v
e
rs

io
n
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REAL IMPLEMENTATION 
ON SVE

• How to convert with SVE? 64-bit example.

512-bit addition

8-bit smaller addition for each 64-bit word

One 64-bit addition

8-bit

True/False

8-bit

8-bit … 8-bit

64-bit ・・・ 64-bit

・・・ True/False

Conversion

・・・ ResultResult

               

                

                 

                         

                         

        

                      

              

      

       

            

             

             

 
 
  
 
   

 

 
 
 
 
 
  
  
 

Selection

Table lookup

Selector
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OUR IMPLEMENTATION
HOW WE CONVERT

• 64-bit example.

16-bit addition

0000 1111 1111 1111

+ 0000 0000 1111 0000

Cin=0 00000 01111 11110 01111

Cin=1 00001 10000 11111 10000

Case N P G P

Select 0001 0000 1110 1111

Case N Case P Case G

𝐴 0 0 1

𝐵 −2 −1 −1

𝐷 = 𝐴 + 𝐵 −2 −1 0

𝐺 = 𝑝𝑜𝑝𝑐𝑛𝑡 𝐷 63 64 0

𝑚 = 𝐷 < 𝐴 False False True

𝑡 = 𝑚𝐴𝐷𝐷(𝐺, 65, 𝑚) 63 + 0 64 + 0 0 + 65

𝑝 191 191 191

𝑠 = 𝑡 + 𝑝 254 255 256
18

𝐼𝑓 𝑚 =  𝑇𝑟𝑢𝑒:  𝑡 ← 𝐺 + 65
𝐸𝑙𝑠𝑒:  𝑡 ← 𝐺



GENERIC MONTGOMERY 
REDUCTION
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MODULAR MULTIPLICATION

• Naïve

• Costly division.

𝐴

𝐵

𝐴𝐵

𝐴𝐵 𝑚𝑜𝑑 𝑝

Division

ሚ𝐴

෨𝐵

ሚ𝐴 ෨𝐵
𝐴

𝐵

𝐴𝐵 𝑚𝑜𝑑 𝑝

෪𝐴𝐵𝑚𝑜𝑑 𝑝

𝑅2 𝑚𝑜𝑑 𝑝

𝑅2 𝑚𝑜𝑑 𝑝

REDC

REDC

Montgomery multiplication

Using REDC (next page).

No division
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For the selected R

Calculate this

GENERIC 
MONTGOMERY 
REDUCTION[4]

Word length 𝜔

[4] P. L. Montgomery, “Modular 
multiplication without trial division,” 
Mathematics of computation, vol. 44, no. 
170, pp. 519–521, 1985. 21

𝑇 < 𝑝𝑅
𝑝 < 𝑅 = 𝑟𝑛 = 2𝜔𝑛

𝑇(𝑖) ≡ 𝑇𝑟−𝑖 𝑚𝑜𝑑 𝑝



𝑇(𝑖) ← 𝑇 𝑖−1 𝑟−1 𝑚𝑜𝑑 𝑝

𝑅𝐸𝐷𝐶 𝑇 = 𝑇(𝑖) = 𝑇𝑟−𝑛 𝑚𝑜𝑑 𝑝

GENERIC 
MONTGOMERY 

REDUCTION

22

𝑇 < 𝑝𝑅
𝑝 < 𝑅 = 𝑟𝑛 = 2𝜔𝑛

𝑇(𝑖) ≡ 𝑇𝑟−𝑖 𝑚𝑜𝑑 𝑝



GENERIC 
MONTGOMERY 

REDUCTION
DEPENDENCY

Data dependency

𝑄 → 𝑇(1) → 𝑄 → 𝑇(2) → ⋯ → 𝑄 → 𝑇(𝑛)

23

𝑄 → 𝑇(𝑖)

𝑇(𝑖−1) → 𝑄

𝑇 < 𝑝𝑅
𝑝 < 𝑅 = 𝑟𝑛 = 2𝜔𝑛

𝑇(𝑖) ≡ 𝑇𝑟−𝑖 𝑚𝑜𝑑 𝑝



PROBLEM OF DEPENDENCY

Just an illustration, not real ratio!

Additions are omitted for simplicity

Time

x64/A64

Enough parallelism

AVX-512/SVE

Naive

24

𝑄 → 𝑇(𝑖)

𝑇(𝑖−1) → 𝑄



PROBLEM OF DEPENDENCY

Just an illustration, not real ratio!

Additions are omitted for simplicity

Time

x64/A64

Less parallelism

Due to less instruction needed

AVX-512/SVE

Naive

25

𝑄 → 𝑇(𝑖)

𝑇(𝑖−1) → 𝑄



PROBLEM OF DEPENDENCY

Just an illustration, not real ratio!

Additions are omitted for simplicity

Time

x64/A64

More instruction needed

than x64/A64

AVX-512/SVE

Naive
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𝑄 → 𝑇(𝑖)

𝑇 𝑖−1 → 𝑄



Since

𝑇 = ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖 , 𝑡𝑖 < 𝑟 except 𝑡𝑛−1

Then

𝑅𝐸𝐷𝐶 𝑇 ≡ 𝑅−1 ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖

≡ ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖−𝑛  (𝑚𝑜𝑑 𝑝)

However, we want 𝑅𝐸𝐷𝐶 𝑇 < 𝑝

OUR PROPOSED REDC(T) WITH LESS 
DEPENDENCY

Dependency free
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Since

𝑇 = ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖 , 𝑡𝑖 < 𝑟 except 𝑡𝑛−1

Then

𝑅𝐸𝐷𝐶 𝑇 ≡ 𝑅−1 ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖

≡ ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖−𝑛  < 𝑛𝑝𝑟 

≡ 𝑟−2 ෍
𝑖=0

𝑛−1

𝑡𝑖𝑟𝑖−𝑛+2 𝑚𝑜𝑑 𝑝 < 3𝑝

OUR PROPOSED REDC(T) - 
CONTINUE

Can be reduced

to [0, 𝑝) easily

28

𝑅 = 𝑟𝑛



OUR PROPOSED REDC(T)
ILLUSTRATION

)/𝑟2 ≡ (( ) (𝑚𝑜𝑑 𝑝)

Last two iterations are the same
29

Naïve Proposed method



HOW IT WORKS

Proposal 2

x64/A64

AVX-512/SVE

Naive

Both steps have enough parallelism 30



REDUCTION FOR 
MONTGOMERY-FRIENDLY PRIME
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MONTGOMERY 
REDUCTION

SPECIAL 
CASE[5]

𝑝′ = 1if 𝑝 ≡ −1 𝑚𝑜𝑑 𝑟

𝑄 = 𝑇(𝑖−1) 𝑚𝑜𝑑 𝑟

Replace p with p+1

[5]. A. Faz-Herna ́ndez, J. Lo ́pez, E. Ochoa-
Jime ́nez, and F. Rodr ́ıguez- Henr ́ıquez, “A faster 
software implementation of the supersingular 
isogeny Diffie-Hellman key exchange protocol,” 
IEEE Transactions on Computers, vol. 67, no. 11, 
pp. 1622–1636, 2017. 
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MONTGOMERY 
REDUCTION

SPECIAL 
CASE[5]

𝑝′ = 1if 𝑝 ≡ −1 𝑚𝑜𝑑 𝑟

𝑄 = 𝑇(𝑖−1) 𝑚𝑜𝑑 𝑟

Replace p with p+1

[]….

Q  y M    g       p        , w  w    

T             w  h K            h  ,        y
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MONTGOMERY-FRIENDLY 
REDUCTION – CALCULATION FLOW

Special case: 

𝑝 = 2𝑙𝐹 − 1
𝐹 ≈ 2𝑙

E.g. 𝑝503 = 2250 × 3159 − 1, 𝑟 = 264,
𝐹 = 3159(4 word) 
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MONTGOMERY-FRIENDLY 
REDUCTION – CALCULATION FLOW

4×2 multiplication,

E.g. 𝑝503 = 2250 × 3159 − 1, 𝑟 = 264,
𝐹 = 3159 35

Q2, Q1, Q0

F

3 word

4 word×4×3 multiplication,



MO T OMERY FRIE DLY 
REDU TIO   RO O ED METHOD

𝑄3 is only dependent on 𝑄0

Can be calculated ahead with one multiplication.

4×4 multiplication,

Can use Karatsuba to accelerate.

𝑄3 = 𝑇3 + 𝐹 𝑚𝑜𝑑 𝑟 𝑄0 𝑚𝑜𝑑 𝑟

E.g. 𝑝503 = 2250 × 3159 − 1, 𝑟 = 264,
𝐹 = 3159 36



RESULTS
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CTIDH-511 WITH PROPOSED METHOD 
ON SVE

ARM64[6]

Runtime 

(cycles)

SVE

Runtime 

(cycles)

Speedup

Addition 16.07 13.72

Proposal 1

1.17x

Montgomery Multiplication 406.98 258.96

Proposal 2

1.57x

CTIDH[7] Action 316,308,640 242,948,411

Proposal 1+2

1.30x

Benchmarked with A64FX@2.20GHz on Wisteria BDEC/01 (Odyssey) at U-Tokyo

[6]. Jalali, A. et al. (2019). Towards Optimized and Constant-Time CSIDH on Embedded Devices. In: Polian, I., Stöttinger, M. (eds) 

Constructive Side-Channel Analysis and Secure Design. COSADE 2019. Lecture Notes in Computer Science, vol 11421. 

Springer, Cham. 

[7]. Banegas, Gustavo, et al. (2021). CTIDH: faster constant-time CSIDH. IACR Transactions on Cryptographic Hardware and 

Embedded Systems

Using 511-bit general prime
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CSIDH-511 WITH PROPOSED METHOD
ON AVX-512

Benchmarked with i7-1165G7@2701MHz

[8]. D.           V ́ zq  z,   .   ., “     g       f            h      p           f     IDH,”    LATI  RY T 2  9 

[9]. H.  h  g,   .  , “B   h  g   IDH g   p             g AVX 5 2,” IA R T HE ,    . 2 2 
[10]. W. Castryck,   .   ., “CSIDH: An efficient post-quantum commutative group action,” in ASIACRYPT 2018

Runtime x64[8]

 (cycles)

AVX-512 by [9]

(cycles)

AVX-512

Ours with Proposal 2

Montgomery Squaring 

2-packed

262

1.00x

142

1.85x

104

2.51x

Montgomery Multiplication

2-packed

258

1.00x

145

1.78x

131

1.97x

CSIDH[10] Action 132,051,574

1.00x 

83,099,556

1.59x 

74,491,118

1.77x

Calls multiplication directly 
Specially designed 

squaring algorithm

Using 511-bit general prime
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512-BIT SIMD ADD-WITH-CARRY 
COMPARISON

SVE AVX-512

Kogge-Stone 

Vector Addition 

(cycles)

55.28 4.16 [11]

Proposal 1

(cycles)

42.90

1.29x

6.41

0.65x

[11] A. Yee, “Integer addition and carryout,” 
http://www.numberworld.org/ y- cruncher/internals/addition.html#ks 
add, 2019. 

Efficient Mask -> SVE or GPR not available, 

Mask->GPR available

8x64-bit->8x1-bit8x64-bit->8x8-bit
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SIKEP503 WITH PROPOSED 
REDUCTION

SIDHv3.5[12]

Time (cycles)

New Reduction

Proposal 3

Time (cycles)

Speedup

Reduction 196.84 156.48 1.26x

Keygen 36,749,182 35,204,915 1.04x

Encapsulation 60,642,713 56,449,034 1.07x

Decapsulation 65,017,001 60,901,455 1.07x

[ 2]. Microsoft, “PQCrypto-SIDH,” 2020. [Online]. Available: https://github. com/Microsoft/PQCrypto- SIDH 

Benchmarked with A64FX@2.20GHz on Wisteria BDEC/01 (Odyssey)

Using 503-bit special prime

Highly optimized ARM64 assembly Implementation.

Worth to compared although SIKE has broken
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CONCLUSION

• A parallel algorithm for large integer addition using SIMD is proposed

by converting 512-bit addition to 64-bit to calculate carries

• A parallel algorithm for Montgomery reduction using SIMD is proposed 

by breaking dependency chains

• An optimized reduction algorithm for SIKE-like primes is proposed by 

using Karatsuba method

• 30% speedup for CTIDH on SVE

• 10% speedup for CSIDH on AVX-512

• 27% speedup for the Montgomery reduction of SIKE
42



Q&A

43


	Slide 1: EFFICIENT additions and Montgomery reductions of large integers for simd
	Slide 2: introduction
	Slide 3: SIMD instruction latency comparison
	Slide 4: What we did
	Slide 5: Proposal 1 Large integer addition for sve
	Slide 6: Add with carry (1)
	Slide 7: Add with carry (2)
	Slide 8: Add with carry (3)
	Slide 9: Add with carry (4)
	Slide 10: Large integer addition
	Slide 11: Carry select adder[3]
	Slide 12: Our implementation (1)
	Slide 13: Our implementation (2)
	Slide 14: Our implementation (3)
	Slide 15: Our implementation (4)
	Slide 16: Our implementation (5)
	Slide 17: Real implementation on sve
	Slide 18: Our implementation How we convert
	Slide 19: Generic Montgomery reduction
	Slide 20: Modular multiplication
	Slide 21
	Slide 22
	Slide 23: GENERIC Montgomery reduction dependency
	Slide 24: Problem of dependency
	Slide 25: Problem of dependency
	Slide 26: Problem of dependency
	Slide 27: Our proposed redc(T) with less dependency
	Slide 28: Our proposed redc(T) - Continue
	Slide 29: Our proposed redc(T) illustration
	Slide 30: How it works
	Slide 31: reduction for Montgomery-friendly prime
	Slide 32: Montgomery reduction special case[5]
	Slide 33: Montgomery reduction special case[5]
	Slide 34: Montgomery-friendly reduction – calculation flow
	Slide 35: Montgomery-friendly reduction – calculation flow
	Slide 36: Montgomery-friendly reduction proposed method
	Slide 37: Results
	Slide 38: Ctidh-511 with proposed method on sve
	Slide 39: CSidh-511 with proposed method on avx-512
	Slide 40: 512-bit Simd add-with-carry comparison
	Slide 41: sikep503 with proposed reduction
	Slide 42: Conclusion
	Slide 43: Q&A

