An efficient Barrett reduction algorithm for Gaussian integer moduli

Presenter: Dr. Malek Safieh, Security for Embedded Systems

Authors:

Malek Safieh, Fabrizio De Santis, and Andreas Furch

Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Introduction

- Gaussian integers are used in many applications, like Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC), post-quantum cryptography, error-correcting coding, and many other systems
 →All these applications can benefit from efficient modular arithmetic for Gaussian integers
- In my dissertation [1]: increased efficiency for ECC point multiplications using Montgomery arithmetic over Gaussian integers

→ Low complexity for the reduction with **arbitrary** Gaussian integer moduli [2]

• In [3]: more efficient reduction algorithms for Gaussian integer moduli of **restricted** form

[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132.

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.

[3] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special Gaussian Integer Moduli, in 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France, Sept. 2022.

Page 2 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Introduction

- Gaussian integers are used in many applications, like Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC), post-quantum cryptography, error-correcting coding, and many other systems
 →All these applications can benefit from efficient modular arithmetic for Gaussian integers
- In my dissertation [1]: increased efficiency for ECC point multiplications using Montgomery arithmetic over Gaussian integers

→ Low complexity for the reduction with **arbitrary** Gaussian integer moduli [2]

• In [3]: more efficient reduction algorithms for Gaussian integer moduli of **restricted** form

- In this work, a novel reduction algorithm for Gaussian integers based on **Barrett's** concepts is derived:
 - Suitable for arbitrary Gaussian integer moduli, unlike algorithms from [3]
 - Provides equivalent computational complexity to the Montgomery reduction from [1, 2]
 - No need for Montgomery domain transformations

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.

[3] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special Gaussian Integer Moduli, in 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France, Sept. 2022.

Page 3 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

^[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132.

Introduction to Gaussian integers

- Subset of complex numbers → x = a + bi, i = √-1, a, and b are integer numbers
- Naïve modulo function $\rightarrow x \mod \pi = x \left[\frac{x\pi^*}{\pi\pi^*}\right] \cdot \pi$ [6]
- For $p = \pi \pi^* \equiv 1 \mod 4$, we have Gaussian integer fields G_p isomorphic to prime fields \mathbb{F}_p [6]
- For n = cd, $c \equiv d \equiv 1 \mod 4$, G_n is a Gaussian integer ring isomorphic to the ring over integer numbers \mathbb{Z}_n [1]

[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in *Springer 2021*, ISBN 978-3-658-34458-0, pp. 1-132.
 [6] K. Huber, Codes over Gaussian integers, in *IEEE Transactions on Information Theory*, pp. 207–216, 1994.

Introduction to Gaussian integers

- Subset of complex numbers → x = a + bi, i = √-1, a, and b are integer numbers
- Naïve modulo function $\rightarrow x \mod \pi = x \left[\frac{x\pi^*}{\pi\pi^*}\right] \cdot \pi$ [6]
- For $p = \pi \pi^* \equiv 1 \mod 4$, we have Gaussian integer fields G_p isomorphic to prime fields \mathbb{F}_p [6]
- For n = cd, $c \equiv d \equiv 1 \mod 4$, G_n is a Gaussian integer ring isomorphic to the ring over integer numbers \mathbb{Z}_n [1]

The division for the naïve modulo reduction is expensive. More efficient modulo reduction is needed!

- Elliptic curve cryptography (ECC) is suitable for resource-constrained devices (shorter keys than RSA)
- The ECC trapdoor function is the elliptic curve scalar point multiplication (PM)
- Consider the key k, the length of the key in bits r, and a point on the curve P, then the PM can be calculated using the Horner scheme as

$$k \cdot P = \sum_{j=0}^{r-1} k_j 2^j \cdot P = 2(\dots 2(2k_{r-1} + k_{r-2}P) + \dots) + k_0 P$$

It was shown in [4,5] that representing the key with non-binary base τ can reduce the computational complexity of the PM.
 Let κ be the integer k converted to the base τ, the PM can be calculated as

$$\kappa \cdot P = \sum_{j=0}^{l-1} \kappa_j \tau^j \cdot P = \tau(\cdots \tau(\tau \kappa_{r-1} + \kappa_{r-2}P) + \cdots) + \kappa_0 P$$

[4] M. Safieh, J. Thiers, and J. Freudenberger, Side channel attack resistance of the elliptic curve point multiplication using Gaussian integers, in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), May 2020, pp. 231–236.

[5] M. Hedabou, P. Pinel, and L. Bénéteau, Countermeasures for preventing comb method against SCA attacks, in *Information Security Practice and Experience*, R. H. Deng, F. Bao, H. Pang, and J. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85–96.

Page 6 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

- Elliptic curve cryptography (ECC) is suitable for resource-constrained devices (shorter keys than RSA)
- The ECC trapdoor function is the elliptic curve scalar point multiplication (PM)
- Consider the key k, the length of the key in bits r, and a point on the curve P, then the PM can be calculated using the

Representing the point on the curve *P*, the key κ , the digits of the key κ_j , and the base τ as Gaussian integers reduces the computational complexity of the PM.

This can also reduce the memory requirements for robust applications against side channel attacks (SCA)!

It was shown in [4,5] that representing the key with non-binary base τ can reduce the computational complexity of the PM.
 Let κ be the integer k converted to the base τ, the PM can be calculated as

$$\kappa \cdot P = \sum_{j=0}^{l-1} \kappa_j \tau^j \cdot P = \tau(\cdots \tau(\tau \kappa_{r-1} + \kappa_{r-2}P) + \cdots) + \kappa_0 P$$

[4] M. Safieh, J. Thiers, and J. Freudenberger, Side channel attack resistance of the elliptic curve point multiplication using Gaussian integers, in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), May 2020, pp. 231–236.

[5] M. Hedabou, P. Pinel, and L. Bénéteau, Countermeasures for preventing comb method against SCA attacks, in Information Security Practice and Experience, R. H. Deng, F. Bao, H. Pang, and J. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85–96.

Page 7 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

- Precomputations to prevent side channel attacks for a non-binary base τ or w
- *M* describes multiplication-equivalent operations
- Binary key with r = 163 bits
- *l* is the number of iterations to calculate the point multiplication (PM)
- [5] introduces a memory reduction using ordinary integers for the key expansions
- [4] enables further memory reduction and lower computational complexity using Gaussian integer key expansions

Reference	$ au ^2$ or 2^w	Stored points	l	<i>M</i> for PM & precomp.	
Gaussian integer key expansion [4]	17	5	0.245 <i>r</i>	1678	
Gaussian integer key expansion [4]	29	8	0.206r	1953	
Proposed ordinary key expansion [5]	16	8	0.2515 <i>r</i>	2726	
Fixed-base ordinary key expansion [5]	e d-base 16 15 nary key ansion [5]		0.2515 <i>r</i>	2710	
Proposed ordinary key expansion [5]	32	16	0.203 <i>r</i>	2796	
Fixed-base ordinary key expansion [5]	32	31	0.203 <i>r</i>	2780	

[4] M. Safieh, J. Thiers, and J. Freudenberger, Side channel attack resistance of the elliptic curve point multiplication using Gaussian integers, in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), May 2020, pp. 231–236.

[5] M. Hedabou, P. Pinel, and L. Bénéteau, Countermeasures for preventing comb method against SCA attacks, in *Information Security Practice and Experience*, R. H. Deng, F. Bao, H. Pang, and J. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85–96.

Page 8 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

•	Precomputations to prevent side channel attacks for a non-binary base τ or w	Reference	$ au ^2$ or 2^w	Stored points	l	<i>M</i> for PM & precomp.
 M describes multiplication-equivalent operations 		Gaussian integer key expansion [4]	17	5	0.245 <i>r</i>	1678
		Gaussian integer key expansion [4]	29	8	0.206r	1953
•	Binary key with $r = 163$ bits	Proposed ordinary key expansion [5]	16	8	0.2515r	2726
•	<i>l</i> is the number of iterations to calculate the point multiplication (PM)	Fixed-base ordinary key	16	15	0.2515r	2710
•	 [5] introduces a memory ordinary integers for the This example motivates the requirement of efficient modular arithmetic for Gaussian integers! [4] enables further memory ordinary in the term of term				0.203r	2796
•					0.203 <i>r</i>	2780
	lower computational complexity using Gaussian integer key expansions	expansion [5]				

[4] M. Safieh, J. Thiers, and J. Freudenberger, Side channel attack resistance of the elliptic curve point multiplication using Gaussian integers, in 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), May 2020, pp. 231–236.

[5] M. Hedabou, P. Pinel, and L. Bénéteau, Countermeasures for preventing comb method against SCA attacks, in Information Security Practice and Experience, R. H. Deng, F. Bao, H. Pang, and J. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85–96.

Page 9 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

- Computes r = z mod m using μ (precomputed), for any integer numbers r, z, m, μ [7]
- Only additions, subtractions, multiplications, and digit operations are used
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
 - q_1 and q_3 can be calculated using digit shifts
- Lines 10 to 12 are denoted as final reduction to obtain the final result r from the approximated congruent r'

input: Two positive integer numbers z and m, $\mu = \lfloor \beta^{2k}/m \rfloor, \beta > 3$ output: Integer number $r = z \mod m$

1:
$$q_1 \leftarrow \lfloor z/\beta^{k-1} \rfloor$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow \lfloor q_2/\beta^{k+1} \rfloor$
4: $r_1 \leftarrow z \mod \beta^{k+1}$
5: $r_2 \leftarrow q_3 m \mod \beta^{k+1}$
6: $r' \leftarrow r_1 - r_2$
7: **if** $(r' < 0)$ **then**
8: $r' \leftarrow r' + \beta^{k+1}$
9: **end if**
10: **while** $(r' \ge m)$ **do**
11: $r' \leftarrow r' - m$
12: **end while**
13: $r \leftarrow r'$
14: **return** r

[7] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, **Handbook of Applied Cryptography**, in *CRC Press*, 2001. ISBN: 0-8493-8523-7. [8] J.-F. Dhem, **Modified Version of the Barrett Algorithm**, in *technical report*, 1994.

Page 10 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

- Computes r = z mod m using μ (precomputed), for any integer numbers r, z, m, μ [7]
- Only additions, subtractions, multiplications, and digit operations are used
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
 - q_1 and q_3 can be calculated using digit shifts
- Lines 10 to 12 are denoted as final reduction to obtain the final result r from the approximated congruent r'
- This algorithm determines $q_3 = \left[\frac{\left|\frac{z}{\beta^{k-1}}\right| \left|\frac{\beta^{2k}}{m}\right|}{\beta^{k+1}}\right]$
- Improved version computes $q_3 = \left[\frac{\left|\frac{z}{\beta^{k+\delta}}\right| \left|\frac{\beta^{k+\gamma}}{m}\right|}{\beta^{\gamma-\delta}}\right]$ to reduce the complexity of $\frac{1}{1}$

the final reduction (γ , δ examples [8])

input: Two positive integer numbers z and m, $\mu = \lfloor \beta^{2k}/m \rfloor, \beta > 3$ output: Integer number $r = z \mod m$

1:
$$q_1 \leftarrow \lfloor z/\beta^{k-1} \rfloor$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow \lfloor q_2/\beta^{k+1} \rfloor$
4: $r_1 \leftarrow z \mod \beta^{k+1}$
5: $r_2 \leftarrow q_3 m \mod \beta^{k+1}$
6: $r' \leftarrow r_1 - r_2$
7: **if** $(r' < 0)$ **then**
8: $r' \leftarrow r' + \beta^{k+1}$
9: **end if**
10: **while** $(r' \ge m)$ **do**
11: $r' \leftarrow r' - m$
12: **end while**
13: $r \leftarrow r'$
14: **return** r

[7] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, in CRC Press, 2001. ISBN: 0-8493-8523-7.
 [8] J.-F. Dhem, Modified Version of the Barrett Algorithm, in technical report, 1994.

Page 11 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

- Computes $r = z \mod m$ using μ (precomputed), for any integer numbers r, z, m, μ [7]
- Only additions, subtractions, multiplications, and digit operations are used
- Replace the floor divisions with suitable low-cost rounding functions
- No need for steps 7 to 9, since Gaussian integers include negative integer numbers
- The final reduction for Gaussian integers is more complex →Use the improved Barrett and determine the corresponding values for γ, δ
- Improved version computes $q_3 = \left| \frac{\left| \frac{z}{\beta^{k+\delta}} \right| \left| \frac{\beta^{k+1}}{m} \right|}{\rho^{\nu-\delta}} \right|^{\frac{\beta}{2}}$ to reduce the complexity of the final reduction (γ, δ examples [8])

input: Two positive integer numbers z and m, $\mu = \left| \beta^{2k} / m \right|, \, \beta > 3$ output: Integer number $r = z \mod m$

1:
$$q_1 \leftarrow \lfloor z/\beta^{k-1} \rfloor$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow \lfloor q_2/\beta^{k+1} \rfloor$
4: $r_1 \leftarrow z \mod \beta^{k+1}$
5: $r_2 \leftarrow q_3 m \mod \beta^{k+1}$
6: $r' \leftarrow r_1 - r_2$
7: **if** $(r' < 0)$ **then**
8: $r' \leftarrow r' + \beta^{k+1}$
9: **end if**
10: **while** $(r' \ge m)$ **do**
11: $r' \leftarrow r' - m$
12: **end while**
13: $r \leftarrow r'$
14: **return** r

[7] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, in CRC Press, 2001. ISBN: 0-8493-8523-7. [8] J.-F. Dhem, Modified Version of the Barrett Algorithm, in technical report, 1994.

Page 12 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Proposed novel reduction for Gaussian integers based on Barrett's concepts

- Computes $r = z \mod \pi$ using $\mu = \beta^{k+\delta} \operatorname{cdiv} \pi$ (precomputed), for any Gaussian integers r, z, π, μ
- Uses only subtractions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
 - fdiv rounding towards zero (digit shifts)
 - cdiv rounding away from zero (digit shifts and conditional additions of const. 1)

input: Gaussian integers z, μ, π , integer numbers β, γ, δ output: Gaussian integer $r = z \mod \pi$

1:
$$q_1 \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow q_2 \operatorname{fdiv} \beta^{\gamma-\delta}$
4: $r_1 \leftarrow z \mod \beta^{\gamma-\delta}$
5: $r_2 \leftarrow q_3 \pi \mod \beta^{\gamma-\delta}$
6: $r' \leftarrow r_1 - r_2$
7: **if** $(|r'| < |\pi| (\sqrt{2} - 1)/\sqrt{2})$ **then**
8: $\alpha \leftarrow 0$
9: **else if** $(|r'| < |\pi| / \sqrt{2})$ **then**
0: $\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in \{0, \pm 1, \pm i\}} |r' - \hat{\alpha}\pi|$
1: **else**
2: $\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in \{\pm 1, \pm i, \pm 1 \pm i\}} |r' - \hat{\alpha}\pi|$
3: **end if**
4: $r \leftarrow r' - \alpha \pi$
5: **return** r

[6] K. Huber, Codes over Gaussian integers, in IEEE Transactions on Information Theory, pp. 207–216, 1994.
 Page 13 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Proposed novel reduction for Gaussian integers based on Barrett's concepts

- Computes $r = z \mod \pi$ using $\mu = \beta^{k+\delta} \operatorname{cdiv} \pi$ (precomputed), for any Gaussian integers r, z, π, μ
- Uses only subtractions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
 - fdiv rounding towards zero (digit shifts)
 - cdiv rounding **away** from zero (digit shifts and conditional additions of const. 1)
- The difference between $|q_3|$ and $|Q| = \left| \left[\frac{z\pi^*}{\pi\pi^*} \right] \right|$ from the naïve reduction [6] is upper bounded by $\sqrt{2}$ (derivation in the paper)
- Using this bound, the final reduction (lines 7 to 14) obtains r from the approximated r' based on offset comparisons

[6] K. Huber, **Codes over Gaussian integers**, in *IEEE Transactions on Information Theory*, pp. 207–216, 1994. **Page 14** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

input: Gaussian integers z, μ, π , integer numbers β, γ, δ output: Gaussian integer $r = z \mod \pi$

1:
$$q_1 \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow q_2 \operatorname{fdiv} \beta^{\gamma-\delta}$
4: $r_1 \leftarrow z \mod \beta^{\gamma-\delta}$
5: $r_2 \leftarrow q_3 \pi \mod \beta^{\gamma-\delta}$
6: $r' \leftarrow r_1 - r_2$
7: **if** $(|r'| < |\pi| (\sqrt{2} - 1)/\sqrt{2})$ **then**
8: $\alpha \leftarrow 0$
9: **else if** $(|r'| < |\pi| / \sqrt{2})$ **then**
10: $\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in \{0, \pm 1, \pm i\}} |r' - \hat{\alpha}\pi|$
11: **else**
12: $\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in \{\pm 1, \pm i, \pm 1 \pm i\}} |r' - \hat{\alpha}\pi|$
13: **end if**
14: $r \leftarrow r' - \alpha \pi$
15: **return** r

Concept of the final reduction

- The final reduction computes $r = r' \alpha \pi$
- The upper bound $\sqrt{2}$ is used to limit the possible offset candidates to $\alpha \in \{0, \pm 1, \pm i, \pm 1 \pm i\}$
- Concept to reduce the offset comparisons based on the absolute value [2]
 - If $|r'| < \frac{\sqrt{2}-1}{\sqrt{2}} |\pi|$ then $\alpha = 0$
- Else if $|r'| < \frac{|\pi|}{\sqrt{2}}$ then $\alpha = \underset{\alpha \in \{0, \pm 1, \pm i\}}{\operatorname{argmin}} |q \alpha \pi|$
- Else $\alpha = \underset{\alpha \in \{\pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}} |q \alpha \pi|$
- Further complexity reduction based on the sign of the real and imaginary parts of r' in the paper

input: Gaussian integers z, μ , π , integer numbers β , γ , δ output: Gaussian integer $r = z \mod \pi$

1:
$$q_1 \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow q_2 \operatorname{fdiv} \beta^{\gamma-\delta}$
4: $r_1 \leftarrow z \mod \beta^{\gamma-\delta}$
5: $r_2 \leftarrow q_3 \pi \mod \beta^{\gamma-\delta}$
6: $r' \leftarrow r_1 - r_2$
7: **if** $(|r'| < |\pi| (\sqrt{2} - 1)/\sqrt{2})$ **then**
8: $\alpha \leftarrow 0$
9: **else if** $(|r'| < |\pi| / \sqrt{2})$ **then**
0: $\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in \{0, \pm 1, \pm i\}} |r' - \hat{\alpha}\pi|$
1: **else**
2: $\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in \{\pm 1, \pm i, \pm 1 \pm i\}} |r' - \hat{\alpha}\pi|$
3: **end if**
4: $r \leftarrow r' - \alpha\pi$
5: **return** r

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 15** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Concept of the final reduction

- The final reduction computes $r = r' \alpha \pi$
- The upper bound $\sqrt{2}$ is used to limit the possible offset candidates to $\alpha \in \{0, \pm 1, \pm i, \pm 1 \pm i\}$
- Concept to reduce the offset comparisons based on the absolute value [2]
 - If $|r'| < \frac{\sqrt{2}-1}{\sqrt{2}} |\pi|$ then $\alpha = 0$
 - Else if $|r'| < \frac{|\pi|}{\sqrt{2}}$ then $\alpha = \underset{\alpha \in \{0, \pm 1, \pm i\}}{\operatorname{argmin}} |q \alpha \pi|$
 - Else $\alpha = \underset{\alpha \in \{\pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}} |q \alpha \pi|$
- Further complexity reduction based on the sign of the real and imaginary parts of r' in the paper

Example for G_{73} with $\pi = 8 + 3i$ 15 10 5 Imaginary -5 -10-15-15-10-5 10 15 0 5 Real

Concept of the final reduction

- The final reduction computes $r = r' \alpha \pi$
- The upper bound $\sqrt{2}$ is used to limit the possible offset candidates to $\alpha \in \{0, \pm 1, \pm i, \pm 1 \pm i\}$
- Concept to reduce the offset comparisons based on the absolute value [2]
 - If $|r'| < \frac{\sqrt{2}-1}{\sqrt{2}} |\pi|$ then $\alpha = 0$
 - Else if $|r'| < \frac{|\pi|}{\sqrt{2}}$ then $\alpha = \underset{\alpha \in \{0, \pm 1, \pm i\}}{\operatorname{argmin}} |q \alpha \pi|$
 - Else $\alpha = \underset{\alpha \in \{\pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}} |q \alpha \pi|$
- Further complexity reduction based on the sign of the real and imaginary parts of r' in the paper

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 17** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Montgomery reduction for Gaussian integers according to [2]

- Computes $M = Z \mod \pi$ for any Gaussian integers X, Y, π , Z in the Montgomery domain
- Uses only additions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since *R* is a power of two (typically the word-size of the underlying processor)
 - The function div is identical to our fdiv rounding towards zero (digit shifts)
- Final reduction depends on |q|, where $|q| \le \sqrt{2}$ [2]
- · Identical to the proposed final reduction, since

$$\alpha' = \underset{\alpha \in \{0, \pm 1, \pm i\}}{\operatorname{argmin}} |q - \alpha \pi|$$
$$\alpha'' = \underset{\alpha \in \{\pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}} |q - \alpha \pi|$$

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 18** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

input: Z = XY, $\pi' = -\pi^{-1} \mod R$, $R = 2^l > \frac{|\pi|}{\sqrt{2}}$ **output:** $M = \mu(Z) = ZR^{-1} \mod \pi$

1: $t = Z\pi' \mod R$ // bitwise AND of Re, Im with R - 12: $q = (Z + t\pi) \operatorname{div} R$ // shift Re, Im right by l3: if $(|q| < \frac{\sqrt{2}-1}{\sqrt{2}} |\pi|)$ then 4: M = q5: else if $(|q| < \frac{|\pi|}{\sqrt{2}})$ then 6: determine α' 7: $M = q - \alpha'\pi$ 8: else 9: determine α'' 10: $M = q - \alpha''\pi$

11: end if

Montgomery reduction for Gaussian integers according to [2]

- Computes $M = Z \mod \pi$ for any Gaussian integers X, Y, π , Z in the Montgomery domain
- Uses only additions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since *R* is a power of two (typically the word-size of the underlying processor)
 - The function div is identical to our fdiv rounding towards zero (digit shifts)
- Final reduction depends on |q|, where $|q| \le \sqrt{2}$ [2]
- Identical to the proposed final reduction, since

input: Z = XY, $\pi' = -\pi^{-1} \mod R$, $R = 2^l > \frac{|\pi|}{\sqrt{2}}$ **output:** $M = \mu(Z) = ZR^{-1} \mod \pi$

1: $t = Z\pi' \mod R$ // bitwise AND of Re, Im with R - 12: $q = (Z + t\pi) \operatorname{div} R$ // shift Re, Im right by l3: **if** $(|q| < \frac{\sqrt{2}-1}{\sqrt{2}} |\pi|)$ **then** 4: M = q5: **else if** $(|q| < \frac{|\pi|}{\sqrt{2}})$ **then** 6: determine α' 7: $M = q - \alpha'\pi$ 8: **else** 9: determine α'' 10: $M = q - \alpha''\pi$ 11: **end if**

 $\alpha' = \underset{\alpha \in \{0, \pm 1, \pm i\}}{\operatorname{argmin}} |q - \alpha \pi|$ $\alpha'' = \underset{\alpha \in \{\pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}} |q - \alpha \pi|$

Capital letters demonstrate the representation in the Montgomery domain. Montgomery domain transformations are required!

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 19** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Comparing the proposed reduction with the Montgomery reduction for Gaussian integers from [2]

Montgomery reduction input: Z = XY, $\pi' = -\pi^{-1} \mod R$, $R = 2^l > \frac{|\pi|}{\sqrt{2}}$ output: $M = \mu(Z) = ZR^{-1} \mod \pi$ 1: $t = Z\pi' \mod R$ // bitwise AND of Re, Im with R - 12: $q = (Z + t\pi) \operatorname{div} R$ // shift Re, Im right by l \vdots Final reduction on q

The final reduction is not illustrated since it is identical

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 20** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Proposed reduction

```
input: Gaussian integers z, \mu, \pi, integer numbers \beta, \gamma, \delta
output: Gaussian integer r = z \mod \pi
```

1:
$$q_1 \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$$

2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow q_2 \operatorname{fdiv} \beta^{\gamma-\delta}$
4: $r_1 \leftarrow z \mod \beta^{\gamma-\delta}$
5: $r_2 \leftarrow q_3 \pi \mod \beta^{\gamma-\delta}$
6: $r' \leftarrow r_1 - r_2$
 \vdots

Final reduction on r'

Comparing the proposed reduction with the Montgomery reduction for Gaussian integers from [2]

The final reduction is not illustrated since it is identical

Two complex multiplications by a constant

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 21** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Proposed reduction

```
input: Gaussian integers z, \mu, \pi, integer numbers \beta, \gamma, \delta
output: Gaussian integer r = z \mod \pi
```

1:
$$q_1 \leftarrow z$$
 div $\beta^{k+\delta}$
2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow q_2$ fdiv $\beta^{\gamma-\delta}$
4: $r_1 \leftarrow z \mod \beta^{\gamma-\delta}$
5: $r_2 \leftarrow q_3 \pi \mod \beta^{\gamma-\delta}$
6: $r' \leftarrow r_1 - r_2$
 \vdots

Final reduction on r'

Comparing the proposed reduction with the Montgomery reduction for Gaussian integers from [2]

The final reduction is not illustrated since it is identical

Two complex multiplications by a constant

One complex addition/subtraction

[2] M. Safieh, J. Freudenberger, **Montgomery Reduction for Gaussian Integers**, in *Cryptography*. 2021; 5(1):6. **Page 22** Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

Proposed reduction

```
input: Gaussian integers z, \mu, \pi, integer numbers \beta, \gamma, \delta
output: Gaussian integer r = z \mod \pi
```

1:
$$q_1 \leftarrow z$$
 div $\beta^{k+\delta}$
2: $q_2 \leftarrow q_1 \mu$
3: $q_3 \leftarrow q_2$ fdiv $\beta^{\gamma-\delta}$
4: $r_1 \leftarrow z \mod \beta^{\gamma-\delta}$
5: $r_2 \leftarrow q_3 \pi \mod \beta^{\gamma-\delta}$
6: $r' \leftarrow r_1 - r_2$
Final reduction on r'

Complexity comparison

- Naïve modulo reduction $x \mod \pi = x \left[\frac{x\pi^*}{\pi\pi^*}\right] \cdot \pi$ [6]
- The costs for digit operations are not considered
- The Montgomery domain transformations are defined in [2]

	Addition / subtraction	Multiplication by a constant	Complex number division
Naïve reduction [6]	1	2	1 ←
Montgomery reduction [2]	1	2	-
 Montgomery domain transformations [2] 	2	5	-
Proposed reduction	1	2	-

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in *Cryptography*. 2021; 5(1):6.
[6] K. Huber, Codes over Gaussian integers, in *IEEE Transactions on Information Theory*, pp. 207–216, 1994.

Conclusion

A novel and efficient reduction algorithm for Gaussian integers based on **Barrett**'s concepts is presented

- Suitable for **arbitrary** Gaussian integer moduli
- Providing similar computational complexity as the **Montgomery** reduction for Gaussian integers
- Not requiring **domain transformations** as the Montgomery reduction
- Suitable for any application where modular arithmetic over Gaussian integers is needed (not only ECC !)

SIFME

Thanks for your attention

Questions !?

