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• Gaussian integers are used in many applications, like Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC), 

post-quantum cryptography, error-correcting coding, and many other systems

→All these applications can benefit from efficient modular arithmetic for Gaussian integers

• In my dissertation [1]: increased efficiency for ECC point multiplications using Montgomery arithmetic over Gaussian 

integers

→ Low complexity for the reduction with arbitrary Gaussian integer moduli [2]

• In [3]: more efficient reduction algorithms for Gaussian integer moduli of restricted form

[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132.

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.

[3] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special Gaussian Integer Moduli, in 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France, Sept. 2022.
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post-quantum cryptography, error-correcting coding, and many other systems

→All these applications can benefit from efficient modular arithmetic for Gaussian integers

• In my dissertation [1]: increased efficiency for ECC point multiplications using Montgomery arithmetic over Gaussian 

integers

→ Low complexity for the reduction with arbitrary Gaussian integer moduli [2]

• In [3]: more efficient reduction algorithms for Gaussian integer moduli of restricted form

• In this work, a novel reduction algorithm for Gaussian integers based on Barrett’s concepts is derived:

• Suitable for arbitrary Gaussian integer moduli, unlike algorithms from [3] 

• Provides equivalent computational complexity to the Montgomery reduction from [1, 2]

• No need for Montgomery domain transformations

[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132.

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.

[3] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special Gaussian Integer Moduli, in 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France, Sept. 2022.
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𝐺73 with 𝜋 = 8 + 3i, 𝑝 = 𝜋𝜋∗ = 73

Introduction to Gaussian integers
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• Subset of complex numbers→ 𝑥 = 𝑎 + 𝑏i, i = −1, 𝑎, and 

𝑏 are integer numbers 

• Naïve modulo function→ 𝑥 𝑚𝑜𝑑 𝜋 = 𝑥 −
𝑥𝜋∗

𝜋𝜋∗ ∙ 𝜋 [6]

• For 𝑝 = 𝜋𝜋∗ ≡ 1 𝑚𝑜𝑑 4, we have Gaussian integer fields 

𝐺𝑝 isomorphic to prime fields 𝔽𝑝 [6]

• For 𝑛 = 𝑐𝑑, 𝑐 ≡ 𝑑 ≡ 1 𝑚𝑜𝑑 4, 𝐺𝑛 is a Gaussian integer 

ring isomorphic to the ring over integer numbers ℤ𝑛 [1]

[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132.

[6] K. Huber, Codes over Gaussian integers, in IEEE Transactions on Information Theory, pp. 207–216, 1994.
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[1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132.

[6] K. Huber, Codes over Gaussian integers, in IEEE Transactions on Information Theory, pp. 207–216, 1994.

The division for the naïve modulo reduction is expensive. 

More efficient modulo reduction is needed!
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Motivation for efficient Gaussian integer modular arithmetic with ECC system
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• Elliptic curve cryptography (ECC) is suitable for resource-constrained devices (shorter keys than RSA)

• The ECC trapdoor function is the elliptic curve scalar point multiplication (PM)

• Consider the key 𝑘, the length of the key in bits 𝑟, and a point on the curve 𝑃, then the PM can be calculated using the 

Horner scheme as

𝑘 ⋅ 𝑃 = 

𝑗=0

𝑟−1

𝑘𝑗2𝑗 ⋅ 𝑃 = 2 ⋯ 2 2𝑘𝑟−1 + 𝑘𝑟−2𝑃 + ⋯ + 𝑘0𝑃

• It was shown in [4,5] that representing the key with non-binary base 𝜏 can reduce the computational complexity of the PM. 

Let 𝜅 be the integer 𝑘 converted to the base 𝜏, the PM can be calculated as

𝜅 ⋅ 𝑃 = 

𝑗=0

𝑙−1

𝜅𝑗𝜏𝑗 ⋅ 𝑃 = 𝜏 ⋯ 𝜏 𝜏𝜅𝑟−1 + 𝜅𝑟−2𝑃 + ⋯ + 𝜅0𝑃

Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

[4] M. Safieh, J. Thiers, and J. Freudenberger, Side channel attack resistance of the elliptic curve point multiplication using Gaussian integers, in 2020 Zooming Innovation in Consumer Technologies Conference 

(ZINC), May 2020, pp. 231–236.

[5] M. Hedabou, P. Pinel, and L. Bénéteau , Countermeasures for preventing comb method against SCA attacks, in Information Security Practice and Experience, R. H. Deng, F. Bao, H. Pang, and J. Zhou, Eds. 

Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85–96.
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𝑗=0

𝑙−1

𝜅𝑗𝜏𝑗 ⋅ 𝑃 = 𝜏 ⋯ 𝜏 𝜏𝜅𝑟−1 + 𝜅𝑟−2𝑃 + ⋯ + 𝜅0𝑃

Representing the point on the curve 𝑃, the key 𝜅, the digits of the key 𝜅𝑗, and the base 𝜏 as Gaussian integers 

reduces the computational complexity of the PM.

This can also reduce the memory requirements for robust applications against side channel attacks (SCA)!
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• Precomputations to prevent side channel 

attacks for a non-binary base 𝜏 or 𝑤

• M describes multiplication-equivalent 

operations

• Binary key with 𝑟 = 163 bits

• 𝑙 is the number of iterations to calculate the 

point multiplication (PM)

• [5] introduces a memory reduction using 

ordinary integers for the key expansions 

• [4] enables further memory reduction and 

lower computational complexity using 

Gaussian integer key expansions 

Reference 𝝉 𝟐

or 𝟐𝒘
Stored points 𝒍 M for PM

& precomp.

Gaussian integer 

key expansion [4]

17 5 0.245𝑟 1678

Gaussian integer 

key expansion [4]

29 8 0.206𝑟 1953

Proposed ordinary 

key expansion [5]

16 8 0.2515𝑟 2726

Fixed-base 

ordinary key 

expansion [5] 

16 15 0.2515𝑟 2710

Proposed ordinary 

key expansion [5]

32 16 0.203𝑟 2796

Fixed-base 

ordinary key 

expansion [5] 

32 31 0.203𝑟 2780
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key expansion [5]
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Fixed-base 
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expansion [5] 

16 15 0.2515𝑟 2710

Proposed ordinary 

key expansion [5]

32 16 0.203𝑟 2796

Fixed-base 

ordinary key 

expansion [5] 

32 31 0.203𝑟 2780

This example motivates the requirement of efficient modular 

arithmetic for Gaussian integers!
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• Computes 𝑟 = 𝑧 𝑚𝑜𝑑 𝑚 using 𝜇 (precomputed), for any integer numbers 

𝑟, 𝑧, 𝑚, 𝜇 [7]

• Only additions, subtractions, multiplications, and digit operations are used

• No divisions are needed since 𝛽 is a power of two (typically the word-size 

of the underlying processor)

• 𝑞1 and 𝑞3 can be calculated using digit shifts

• Lines 10 to 12 are denoted as final reduction to obtain the final result 𝑟

from the approximated congruent 𝑟′

Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

Page 10

[7] A. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of Applied Cryptography, in CRC Press, 2001. ISBN: 0-8493-8523-7.

[8] J.-F. Dhem, Modified Version of the Barrett Algorithm, in technical report, 1994.
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• Replace the floor divisions with suitable low-cost rounding 

functions

• No need for steps 7 to 9, since Gaussian integers include 

negative integer numbers

• The final reduction for Gaussian integers is more complex 

→Use the improved Barrett and determine the corresponding 

values for 𝛾,𝛿



Proposed novel reduction for Gaussian integers based on Barrett’s concepts

• Computes 𝑟 = 𝑧 𝑚𝑜𝑑 𝜋 using 𝜇 = 𝛽𝑘+𝛿  𝑐𝑑𝑖𝑣 𝜋

(precomputed), for any Gaussian integers 𝑟, 𝑧, 𝜋, 𝜇

• Uses only subtractions, multiplications, and digit operations 

(lines 1 to 6)

• No divisions are needed since 𝛽 is a power of two (typically 

the word-size of the underlying processor)

• fdiv rounding towards zero (digit shifts)

• cdiv rounding away from zero (digit shifts and conditional 

additions of const. 1) 

Page 13

[6] K. Huber, Codes over Gaussian integers, in IEEE Transactions on Information Theory, pp. 207–216, 1994.
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Page 14

[6] K. Huber, Codes over Gaussian integers, in IEEE Transactions on Information Theory, pp. 207–216, 1994.

• The difference between 𝑞3 and 𝑄 =
𝑧𝜋∗

𝜋𝜋∗ from the naïve 

reduction [6] is upper bounded by 2 (derivation in the 

paper)

• Using this bound, the final reduction (lines 7 to 14) obtains 𝑟

from the approximated 𝑟′ based on offset comparisons
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Concept of the final reduction
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• The final reduction computes 𝑟 = 𝑟′ − 𝛼𝜋

• The upper bound 2 is used to limit the possible 

offset candidates to 𝛼 ∈ {0, ±1, ±𝑖, ±1 ± 𝑖}

• Concept to reduce the offset comparisons  

based on the absolute value [2]

• If 𝑟′ <
2−1

2
𝜋 then 𝛼 = 0

• Else if 𝑟′ <
𝜋

2
 then 𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛

𝛼∈{0,±1,±𝑖}
𝑞 − 𝛼𝜋  

• Else 𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼∈{±1,±𝑖,±1±𝑖}

𝑞 − 𝛼𝜋

• Further complexity reduction based on the sign 

of the real and imaginary parts of 𝑟′ in the paper

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.
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Example for 𝐺73 with 𝜋 = 8 + 3i
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2−1

2
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𝜋

2
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[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.
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Montgomery reduction for Gaussian integers according to [2]

• Computes 𝑀 = 𝑍 𝑚𝑜𝑑 𝜋 for any Gaussian integers 

X, 𝑌, 𝜋, 𝑍 in the Montgomery domain 

• Uses only additions, multiplications, and digit operations 

(lines 1 to 6)

• No divisions are needed since 𝑅 is a power of two 

(typically the word-size of the underlying processor)

• The function div is identical to our fdiv rounding 

towards zero (digit shifts)

• Final reduction depends on 𝑞 , where 𝑞 ≤ 2 [2]

• Identical to the proposed final reduction, since

𝛼′ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼∈{0,±1,±𝑖}

𝑞 − 𝛼𝜋  

𝛼′′ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛼∈{±1,±𝑖,±1±𝑖}

𝑞 − 𝛼𝜋
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[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.
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Capital letters demonstrate the representation in the Montgomery domain.

Montgomery domain transformations are required!

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.



Comparing the proposed reduction with the Montgomery reduction for 
Gaussian integers from [2] 

Page 20

Montgomery reduction Proposed reduction

⁞
Final reduction on 𝑟′

⁞
Final reduction on 𝑞

The final reduction is not illustrated since it is identical
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[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.
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Montgomery reduction Proposed reduction

⁞
Final reduction on 𝑟′

Two complex multiplications by a constant

⁞
Final reduction on 𝑞

The final reduction is not illustrated since it is identical
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[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.



Comparing the proposed reduction with the Montgomery reduction for 
Gaussian integers from [2] 

Page 22

Montgomery reduction Proposed reduction

⁞
Final reduction on 𝑟′

Two complex multiplications by a constant

⁞
Final reduction on 𝑞

One complex addition/subtraction

The final reduction is not illustrated since it is identical
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[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.



Complexity comparison

• Naïve modulo reduction 𝑥 𝑚𝑜𝑑 𝜋 = 𝑥 −
𝑥𝜋∗

𝜋𝜋∗ ∙ 𝜋 [6]

• The costs for digit operations are not considered

• The Montgomery domain transformations are defined in [2] 
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Addition / 

subtraction

Multiplication by a 

constant

Complex number 

division

Naïve reduction [6] 1 2 1

Montgomery reduction [2] 1 2 -

Montgomery domain 

transformations [2]

2 5 -

Proposed reduction 1 2 -

[2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.

[6] K. Huber, Codes over Gaussian integers, in IEEE Transactions on Information Theory, pp. 207–216, 1994.
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Conclusion 
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A novel and efficient reduction algorithm for Gaussian integers based on Barrett’s concepts is presented

• Suitable for arbitrary Gaussian integer moduli

• Providing similar computational complexity as the Montgomery reduction for Gaussian integers

• Not requiring domain transformations as the Montgomery reduction 

• Suitable for any application where modular arithmetic over Gaussian integers is needed (not only ECC !)
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Thanks for your attention

Questions !?
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