An efficient Barrett reduction algorithm for Gaussian integer modulf

Presenter:

Dr. Malek \$afieh', Security for Embedded Systems •

Authors:

Malek Saffieh, Fabrizio" De Sañtis, and Andreas Furch"
Unrestricted © Siemens 2023 \& Dr. Malek Safieh | Siemens Technology | 2023-09-04

Introduction

- Gaussian integers are used in many applications, like Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC), post-quantum cryptography, error-correcting coding, and many other systems
\rightarrow All these applications can benefit from efficient modular arithmetic for Gaussian integers
- In my dissertation [1]: increased efficiency for ECC point multiplications using Montgomery arithmetic over Gaussian integers
\rightarrow Low complexity for the reduction with arbitrary Gaussian integer moduli [2]
- In [3]: more efficient reduction algorithms for Gaussian integer moduli of restricted form

[^0]
Introduction

- Gaussian integers are used in many applications, like Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC), post-quantum cryptography, error-correcting coding, and many other systems
\rightarrow All these applications can benefit from efficient modular arithmetic for Gaussian integers
- In my dissertation [1]: increased efficiency for ECC point multiplications using Montgomery arithmetic over Gaussian integers
\rightarrow Low complexity for the reduction with arbitrary Gaussian integer moduli [2]
- In [3]: more efficient reduction algorithms for Gaussian integer moduli of restricted form
- In this work, a novel reduction algorithm for Gaussian integers based on Barrett's concepts is derived:
- Suitable for arbitrary Gaussian integer moduli, unlike algorithms from [3]
- Provides equivalent computational complexity to the Montgomery reduction from [1, 2]
- No need for Montgomery domain transformations

[^1]
Introduction to Gaussian integers

$$
G_{73} \text { with } \pi=8+3 \mathrm{i}, p=\pi \pi^{*}=73
$$

- Subset of complex numbers $\rightarrow x=a+b \mathrm{i}, \mathrm{i}=\sqrt{-1}, a$, and b are integer numbers
- Naïve modulo function $\rightarrow \bmod \pi=x-\left[\frac{x \pi^{*}}{\pi \pi^{*}}\right] \cdot \pi[6]$
- For $p=\pi \pi^{*} \equiv 1 \bmod 4$, we have Gaussian integer fields G_{p} isomorphic to prime fields \mathbb{F}_{p} [6]
- For $n=c d, c \equiv d \equiv 1 \bmod 4, G_{n}$ is a Gaussian integer ring isomorphic to the ring over integer numbers \mathbb{Z}_{n} [1]

Introduction to Gaussian integers

- Subset of complex numbers $\rightarrow x=a+b \mathrm{i}, \mathrm{i}=\sqrt{-1}, a$, and b are integer numbers
- Naïve modulo function $\rightarrow x \bmod \pi=x-\left[\frac{x \pi^{*}}{\pi \pi^{*}}\right] \cdot \pi[6]$
- For $p=\pi \pi^{*} \equiv 1 \bmod 4$, we have Gaussian integer fields G_{p} isomorphic to prime fields \mathbb{F}_{p} [6]
- For $n=c d, c \equiv d \equiv 1 \bmod 4, G_{n}$ is a Gaussian integer ring isomorphic to the ring over integer numbers \mathbb{Z}_{n} [1]

Motivation for efficient Gaussian integer modular arithmetic with ECC system

- Elliptic curve cryptography (ECC) is suitable for resource-constrained devices (shorter keys than RSA)
- The ECC trapdoor function is the elliptic curve scalar point multiplication (PM)
- Consider the key k, the length of the key in bits r, and a point on the curve P, then the PM can be calculated using the Horner scheme as

$$
k \cdot P=\sum_{j=0}^{r-1} k_{j} 2^{j} \cdot P=2\left(\cdots 2\left(2 k_{r-1}+k_{r-2} P\right)+\cdots\right)+k_{0} P
$$

- It was shown in $[4,5]$ that representing the key with non-binary base τ can reduce the computational complexity of the PM. Let κ be the integer k converted to the base τ, the PM can be calculated as

$$
\kappa \cdot P=\sum_{j=0}^{l-1} \kappa_{j} \tau^{j} \cdot P=\tau\left(\cdots \tau\left(\tau \kappa_{r-1}+\kappa_{r-2} P\right)+\cdots\right)+\kappa_{0} P
$$

[^2]
Motivation for efficient Gaussian integer modular arithmetic with ECC system

- Elliptic curve cryptography (ECC) is suitable for resource-constrained devices (shorter keys than RSA)
- The ECC trapdoor function is the elliptic curve scalar point multiplication (PM)
- Consider the key k, the length of the key in bits r, and a point on the curve P, then the PM can be calculated using the

Representing the point on the curve P, the key κ, the digits of the key κ_{j}, and the base τ as Gaussian integers reduces the computational complexity of the PM.
This can also reduce the memory requirements for robust applications against side channel attacks (SCA)!

- It was shown in $[4,5]$ that representing the key with non-binary base τ can reduce the computational complexity of the PM. Let κ be the integer k converted to the base τ, the PM can be calculated as

$$
\kappa \cdot P=\sum_{j=0}^{l-1} \kappa_{j} \tau^{j} \cdot P=\tau\left(\cdots \tau\left(\tau \kappa_{r-1}+\kappa_{r-2} P\right)+\cdots\right)+\kappa_{0} P
$$

[^3]
Motivation for efficient Gaussian integer modular arithmetic with ECC system

- Precomputations to prevent side channel attacks for a non-binary base τ or w
- M describes multiplication-equivalent operations
- Binary key with $r=163$ bits
- l is the number of iterations to calculate the point multiplication (PM)
- [5] introduces a memory reduction using ordinary integers for the key expansions
- [4] enables further memory reduction and lower computational complexity using

Reference	$\begin{gathered} \|\tau\|^{2} \\ \text { or } 2^{w} \end{gathered}$	Stored points	l	M for PM \& precomp.
Gaussian integer key expansion [4]	17	5	$0.245 r$	1678
Gaussian integer key expansion [4]	29	8	$0.206 r$	1953
Proposed ordinary key expansion [5]	16	8	$0.2515 r$	2726
Fixed-base ordinary key expansion [5]	16	15	$0.2515 r$	2710
Proposed ordinary key expansion [5]	32	16	$0.203 r$	2796
Fixed-base ordinary key expansion [5]	32	31	$0.203 r$	2780

[^4]
Motivation for efficient Gaussian integer modular arithmetic with ECC system

- Precomputations to prevent side channel attacks for a non-binary base τ or w
- M describes multiplication-equivalent operations
- Binary key with $r=163$ bits
- l is the number of iterations to calculate the point multiplication (PM)

Reference	$\begin{gathered} \|\tau\|^{2} \\ \text { or } 2^{w} \end{gathered}$	Stored points	l	M for PM \& precomp.
Gaussian integer key expansion [4]	17	5	$0.245 r$	1678
Gaussian integer key expansion [4]	29	8	$0.206 r$	1953
Proposed ordinary key expansion [5]	16	8	$0.2515 r$	2726
Fixed-base ordinary key	16	15	$0.2515 r$	2710
ates the requirement of efficient modular etic for Gaussian integers!			$0.203 r$	2796
			$0.203 r$	2780
expansion [5]				

- [4] enables further mem

This example motivates the requirement of efficient modular arithmetic for Gaussian integers!
expansion [5] lower computational complexity using Gaussian integer key expansions

[^5]
Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

- Computes $r=z \bmod m$ using μ (precomputed), for any integer numbers $r, z, m, \mu[7]$
- Only additions, subtractions, multiplications, and digit operations are used
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
- q_{1} and q_{3} can be calculated using digit shifts
- Lines 10 to 12 are denoted as final reduction to obtain the final result r from the approximated congruent r^{\prime}
input: Two positive integer numbers z and m, $\mu=\left\lfloor\beta^{2 k} / m\right\rfloor, \beta>3$
output: Integer number $r=z \bmod m$

```
\(q_{1} \leftarrow\left\lfloor z / \beta^{k-1}\right\rfloor\)
\(q_{2} \leftarrow q_{1} \mu\)
\(q_{3} \leftarrow\left\lfloor q_{2} / \beta^{k+1}\right\rfloor\)
\(r_{1} \leftarrow z \bmod \beta^{k+1}\)
\(r_{2} \leftarrow q_{3} m \bmod \beta^{k+1}\)
\(r^{\prime} \leftarrow r_{1}-r_{2}\)
if \(\left(r^{\prime}<0\right)\) then
    \(r^{\prime} \leftarrow r^{\prime}+\beta^{k+1}\)
end if
while \(\left(r^{\prime} \geq m\right)\) do
    \(r^{\prime} \leftarrow r^{\prime}-m\)
end while
\(r \leftarrow r^{\prime}\)
return \(r\)
```


Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

- Computes $r=z$ mod m using μ (precomputed), for any integer numbers $r, z, m, \mu[7]$
- Only additions, subtractions, multiplications, and digit operations are used
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
- q_{1} and q_{3} can be calculated using digit shifts
- Lines 10 to 12 are denoted as final reduction to obtain the final result r from the approximated congruent r^{\prime}
- This algorithm determines $q_{3}=\left\lfloor\frac{\left.\left|\frac{z}{\beta^{k-1}}\right| \frac{\beta^{2 k}}{m}\right\rfloor}{\beta^{k+1}}\right\rfloor$
- Improved version computes $q_{3}=\left\lfloor\frac{\left\lfloor\left.\frac{z}{\beta^{k+\delta} \delta} \right\rvert\, \frac{\beta^{k+\gamma}}{m}\right.}{\beta^{\gamma-\delta}}\right\rfloor$ to reduce the complexity of the final reduction (γ, δ examples [8])
input: Two positive integer numbers z and m, $\mu=\left\lfloor\beta^{2 k} / m\right\rfloor, \beta>3$
output: Integer number $r=z \bmod m$

```
\(q_{1} \leftarrow\left\lfloor z / \beta^{k-1}\right\rfloor\)
\(q_{2} \leftarrow q_{1} \mu\)
\(q_{3} \leftarrow\left\lfloor q_{2} / \beta^{k+1}\right\rfloor\)
\(r_{1} \leftarrow z \bmod \beta^{k+1}\)
\(r_{2} \leftarrow q_{3} m \bmod \beta^{k+1}\)
\(r^{\prime} \leftarrow r_{1}-r_{2}\)
if \(\left(r^{\prime}<0\right)\) then
    \(r^{\prime} \leftarrow r^{\prime}+\beta^{k+1}\)
end if
while \(\left(r^{\prime} \geq m\right)\) do
    \(r^{\prime} \leftarrow r^{\prime}-m\)
end while
\(r \leftarrow r^{\prime}\)
return \(r\)
```


Concepts of Barrett reduction for integer numbers [7, Alg. 14.42]

- Computes $r=z$ mod m using μ (precomputed), for any integer numbers $r, z, m, \mu[7]$
input: Two positive integer numbers z and m, $\mu=\left\lfloor\beta^{2 k} / m\right\rfloor, \beta>3$
output: Integer number $r=z \bmod m$
- Onlv additions. subtractions. multiolications. and diait operations are used
- Replace the floor divisions with suitable low-cost rounding functions
- No need for steps 7 to 9 , since Gaussian integers include negative integer numbers
- The final reduction for Gaussian integers is more complex \rightarrow Use the improved Barrett and determine the corresponding values for γ, δ
- Improved version computes $q_{3}=\left\{\frac{\left\lfloor\frac{z}{\beta^{k+\delta} \delta}\left|\frac{\beta^{k+\gamma}}{m}\right|\right.}{\beta^{\gamma-\delta}}\right\rfloor$ to reduce the complexity of the final reduction (γ, δ examples [8])

```
\(q_{1} \leftarrow\left\lfloor z / \beta^{k-1}\right\rfloor\)
\(q_{2} \leftarrow q_{1} \mu\)
\(q_{3} \leftarrow\left\lfloor q_{2} / \beta^{k+1}\right\rfloor\)
\(r_{1} \leftarrow z \bmod \beta^{k+1}\)
\(r_{2} \leftarrow q_{3} m \bmod \beta^{k+1}\)
\(r^{\prime} \leftarrow r_{1}-r_{2}\)
if \(\left(r^{\prime}<0\right)\) then
    \(r^{\prime} \leftarrow r^{\prime}+\beta^{k+1}\)
end if
while \(\left(r^{\prime} \geq m\right)\) do
        \(r^{\prime} \leftarrow r^{\prime}-m\)
end while
\(r \leftarrow r^{\prime}\)
return \(r\)
```


Proposed novel reduction for Gaussian integers based on Barrett's concepts

- Computes $r=z \bmod \pi$ using $\mu=\beta^{k+\delta} \operatorname{cdiv} \pi$ (precomputed), for any Gaussian integers r, z, π, μ
- Uses only subtractions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
- fdiv rounding towards zero (digit shifts)
- cdiv rounding away from zero (digit shifts and conditional additions of const. 1)
input: Gaussian integers z, μ, π, integer numbers β, γ, δ output: Gaussian integer $r=z \bmod \pi$
$: q_{1} \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$
$q_{2} \leftarrow q_{1} \mu$
$q_{3} \leftarrow q_{2}$ fdiv $\beta^{\gamma-\delta}$
$r_{1} \leftarrow z \bmod \beta^{\gamma-\delta}$
$r_{2} \leftarrow q_{3} \pi \bmod \beta^{\gamma-\delta}$
$r^{\prime} \leftarrow r_{1}-r_{2}$
if $\left(\left|r^{\prime}\right|<|\pi|(\sqrt{2}-1) / \sqrt{2}\right)$ then
$\alpha \leftarrow 0$
else if $\left(\left|r^{\prime}\right|<|\pi| / \sqrt{2}\right)$ then

$$
\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in\{0, \pm 1, \pm \mathrm{i}\}}\left|r^{\prime}-\hat{\alpha} \pi\right|
$$

else
$\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in\{ \pm 1, \pm \mathrm{i}, \pm 1 \pm \mathrm{i}\}}\left|r^{\prime}-\hat{\alpha} \pi\right|$
end if
$r \leftarrow r^{\prime}-\alpha \pi$
return r

Proposed novel reduction for Gaussian integers based on Barrett's concepts

- Computes $r=z \bmod \pi$ using $\mu=\beta^{k+\delta} \operatorname{cdiv} \pi$ (precomputed), for any Gaussian integers r, z, π, μ
- Uses only subtractions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since β is a power of two (typically the word-size of the underlying processor)
- fdiv rounding towards zero (digit shifts)
- cdiv rounding away from zero (digit shifts and conditional additions of const. 1)
- The difference between $\left|q_{3}\right|$ and $|Q|=\left|\left[\frac{2 \pi^{*}}{\pi \pi^{*}}\right]\right|$ from the naïve reduction [6] is upper bounded by $\sqrt{2}$ (derivation in the paper)
- Using this bound, the final reduction (lines 7 to 14) obtains r from the approximated r^{\prime} based on offset comparisons
input: Gaussian integers z, μ, π, integer numbers β, γ, δ
output: Gaussian integer $r=z \bmod \pi$
$: q_{1} \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$
$q_{2} \leftarrow q_{1} \mu$
$q_{3} \leftarrow q_{2}$ fdiv $\beta^{\gamma-\delta}$
$r_{1} \leftarrow z \bmod \beta^{\gamma-\delta}$
$r_{2} \leftarrow q_{3} \pi \bmod \beta^{\gamma-\delta}$
$r^{\prime} \leftarrow r_{1}-r_{2}$
if $\left(\left|r^{\prime}\right|<|\pi|(\sqrt{2}-1) / \sqrt{2}\right)$ then
$\alpha \leftarrow 0$
else if $\left(\left|r^{\prime}\right|<|\pi| / \sqrt{2}\right)$ then

$$
\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in\{0, \pm 1, \pm \mathrm{i}\}}\left|r^{\prime}-\hat{\alpha} \pi\right|
$$

else
$\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in\{ \pm 1, \pm \mathrm{i}, \pm 1 \pm \mathrm{i}\}}\left|r^{\prime}-\hat{\alpha} \pi\right|$
end if
$r \leftarrow r^{\prime}-\alpha \pi$
return r

Concept of the final reduction

- The final reduction computes $r=r^{\prime}-\alpha \pi$
- The upper bound $\sqrt{2}$ is used to limit the possible offset candidates to $\alpha \in\{0, \pm 1, \pm i, \pm 1 \pm i\}$
- Concept to reduce the offset comparisons based on the absolute value [2]
- If $\left|r^{\prime}\right|<\frac{\sqrt{2}-1}{\sqrt{2}}|\pi|$ then $\alpha=0$
- Else if $\left|r^{\prime}\right|<\frac{|\pi|}{\sqrt{2}}$ then $\alpha=\underset{\alpha \in\{0, \pm 1, \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|$
- Else $\alpha=\underset{\alpha \in\{ \pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|$
- Further complexity reduction based on the sign of the real and imaginary parts of r^{\prime} in the paper
input: Gaussian integers z, μ, π, integer numbers β, γ, δ output: Gaussian integer $r=z \bmod \pi$
$: q_{1} \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$
$q_{2} \leftarrow q_{1} \mu$
$: q_{3} \leftarrow q_{2}$ fdiv $\beta^{\gamma-\delta}$
$: r_{1} \leftarrow z \bmod \beta^{\gamma-\delta}$
$r_{2} \leftarrow q_{3} \pi \bmod \beta^{\gamma-\delta}$
6: $r^{\prime} \leftarrow r_{1}-r_{2}$
if $\left(\left|r^{\prime}\right|<|\pi|(\sqrt{2}-1) / \sqrt{2}\right)$ then
$\alpha \leftarrow 0$
else if $\left(\left|r^{\prime}\right|<|\pi| / \sqrt{2}\right)$ then
$\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in\{0, \pm 1, \pm \mathrm{i}\}}\left|r^{\prime}-\hat{\alpha} \pi\right|$
else
$\alpha \leftarrow \operatorname{argmin}_{\hat{\alpha} \in\{ \pm 1, \pm \mathrm{i}, \pm 1 \pm \mathrm{i}\}}\left|r^{\prime}-\hat{\alpha} \pi\right|$
end if
$r \leftarrow r^{\prime}-\alpha \pi$
return r

Concept of the final reduction

- The final reduction computes $r=r^{\prime}-\alpha \pi$
- The upper bound $\sqrt{2}$ is used to limit the possible offset candidates to $\alpha \in\{0, \pm 1, \pm i, \pm 1 \pm i\}$
- Concept to reduce the offset comparisons based on the absolute value [2]
- If $\left|r^{\prime}\right|<\frac{\sqrt{2}-1}{\sqrt{2}}|\pi|$ then $\alpha=0$
- Else if $\left|r^{\prime}\right|<\frac{|\pi|}{\sqrt{2}}$ then $\alpha=\underset{\alpha \in\{0, \pm 1, \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|$
- Else $\alpha=\underset{\alpha \in\{ \pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|$
- Further complexity reduction based on the sign of the real and imaginary parts of r^{\prime} in the paper

Example for G_{73} with $\pi=8+3 \mathrm{i}$

Concept of the final reduction

- The final reduction computes $r=r^{\prime}-\alpha \pi$
- The upper bound $\sqrt{2}$ is used to limit the possible offset candidates to $\alpha \in\{0, \pm 1, \pm i, \pm 1 \pm i\}$
- Concept to reduce the offset comparisons based on the absolute value [2]
- If $\left|r^{\prime}\right|<\frac{\sqrt{2}-1}{\sqrt{2}}|\pi|$ then $\alpha=0$
- Else if $\left|r^{\prime}\right|<\frac{|\pi|}{\sqrt{2}}$ then $\alpha=\underset{\alpha \in\{0, \pm 1, \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|$
- Else $\alpha=\underset{\alpha \in\{ \pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|$
- Further complexity reduction based on the sign of the real and imaginary parts of r^{\prime} in the paper

Example for G_{73} with $\pi=8+3 \mathrm{i}$

Montgomery reduction for Gaussian integers according to [2]

- Computes $M=Z \bmod \pi$ for any Gaussian integers X, Y, π, Z in the Montgomery domain
- Uses only additions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since R is a power of two (typically the word-size of the underlying processor)
- The function div is identical to our fdiv rounding towards zero (digit shifts)
- Final reduction depends on $|q|$, where $|q| \leq \sqrt{2}$ [2]
- Identical to the proposed final reduction, since

$$
\begin{aligned}
& \alpha^{\prime}=\underset{\alpha \in\{0, \pm 1, \pm i\}}{\operatorname{argmin}}|q-\alpha \pi| \\
& \alpha^{\prime \prime}=\underset{\alpha \in\{ \pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}}|q-\alpha \pi|
\end{aligned}
$$

input: $Z=X Y, \pi^{\prime}=-\pi^{-1} \bmod R, R=2^{l}>\frac{|\pi|}{\sqrt{2}}$
output: $M=\mu(Z)=Z R^{-1} \bmod \pi$
$t=Z \pi^{\prime} \bmod R \quad / /$ bitwise AND of Re, Im with $R-1$

$$
q=(Z+t \pi) \operatorname{div} R \quad / / \text { shift Re, Im right by } l
$$

if $\left(|q|<\frac{\sqrt{2}-1}{\sqrt{2}}|\pi|\right)$ then
$M=q$
else if $\left(|q|<\frac{|\pi|}{\sqrt{2}}\right)$ then determine α^{\prime}
$M=q-\alpha^{\prime} \pi$
else
determine $\alpha^{\prime \prime}$ $M=q-\alpha^{\prime \prime} \pi$
end if

Montgomery reduction for Gaussian integers according to [2]

- Computes $M=Z \bmod \pi$ for any Gaussian integers X, Y, π, Z in the Montgomery domain
- Uses only additions, multiplications, and digit operations (lines 1 to 6)
- No divisions are needed since R is a power of two (typically the word-size of the underlying processor)
- The function div is identical to our fdiv rounding towards zero (digit shifts)
- Final reduction depends on $|q|$, where $|q| \leq \sqrt{2}$ [2]
- Identical to the proposed final reduction, since
input: $Z=X Y, \pi^{\prime}=-\pi^{-1} \bmod R, R=2^{l}>\frac{|\pi|}{\sqrt{2}}$ output: $M=\mu(Z)=Z R^{-1} \bmod \pi$
$t=Z \pi^{\prime} \bmod R \quad / /$ bitwise AND of Re, Im with $R-1$

$$
q=(Z+t \pi) \operatorname{div} R
$$

// shift Re, Im right by l
if $\left(|q|<\frac{\sqrt{2}-1}{\sqrt{2}}|\pi|\right)$ then $M=q$
else if $\left(|q|<\frac{|\pi|}{\sqrt{2}}\right)$ then determine α^{\prime} $M=q-\alpha^{\prime} \pi$
else
determine $\alpha^{\prime \prime}$ $M=q-\alpha^{\prime \prime} \pi$
end if

$$
\begin{aligned}
& \alpha^{\prime}=\underset{\alpha \in\{0, \pm 1, \pm i\}}{\operatorname{argmin}}|q-\alpha \pi| \\
& \alpha^{\prime \prime}=\underset{\alpha \in\{ \pm 1, \pm i, \pm 1 \pm i\}}{\operatorname{argmin}}|q-\alpha\rangle
\end{aligned}
$$

Capital letters demonstrate the representation in the Montgomery domain.
Montgomery domain transformations are required!

Comparing the proposed reduction with the Montgomery reduction for Gaussian integers from [2]

Montgomery reduction

input: $Z=X Y, \pi^{\prime}=-\pi^{-1} \bmod R, R=2^{l}>\frac{|\pi|}{\sqrt{2}}$
output: $M=\mu(Z)=Z R^{-1} \bmod \pi$
1: $t=Z \pi^{\prime} \bmod R \quad / /$ bitwise AND of Re, Im with $R-1$
2: $q=(Z+t \pi) \operatorname{div} R \quad / /$ shift Re, Im right by l !
Final reduction on q

Proposed reduction

input: Gaussian integers z, μ, π, integer numbers β, γ, δ output: Gaussian integer $r=z \bmod \pi$

1: $q_{1} \leftarrow z \operatorname{cdiv} \beta^{k+\delta}$
2: $q_{2} \leftarrow q_{1} \mu$
3: $q_{3} \leftarrow q_{2} \operatorname{fdiv} \beta^{\gamma-\delta}$
4: $r_{1} \leftarrow z \bmod \beta^{\gamma-\delta}$
5: $r_{2} \leftarrow q_{3} \pi \bmod \beta^{\gamma-\delta}$
6: $r^{\prime} \leftarrow r_{1}-r_{2}$

Final reduction on r

The final reduction is not illustrated since it is identical

Comparing the proposed reduction with the Montgomery reduction for Gaussian integers from [2]

Montgomery reduction

input: $Z=X Y, \pi^{\prime}=-\pi^{-1} \bmod R, R=2^{l}>\frac{|\pi|}{\sqrt{2}}$
output: $M=\mu(Z)=Z R^{-1} \bmod \pi$
1: $t=Z \pi^{\prime} \mathrm{m} / \mathrm{d} R \quad / /$ bitwise AND of Re, Im with $R-1$
2: $q=(Z+t \pi) \operatorname{div} R \quad / /$ shift Re, Im right by l !
Final reduction on q

Proposed reduction

input: Gaussian integers z, μ, π, integer numbers β, γ, δ output: Gaussian integer $r=z \bmod \pi$

1: $q_{1} \leftarrow z \cdot \operatorname{div} \beta^{k+\delta}$
2: $q_{2} \leftarrow q_{1} \mu$
3: $q_{3} \leftarrow q_{2} \operatorname{fdiv} \beta^{\gamma-\delta}$
4: $r_{1} \leftarrow z \operatorname{nod} \beta^{\gamma-\delta}$
5: $r_{2} \leftarrow q_{3} \pi \bmod \beta^{\gamma-\delta}$
6: $r^{\prime} \leftarrow r_{1}-r_{2}$

Final reduction on r

The final reduction is not illustrated since it is identical
Two complex multiplications by a constant

Comparing the proposed reduction with the Montgomery reduction for Gaussian integers from [2]

Montgomery reduction

input: $Z=X Y, \pi^{\prime}=-\pi^{-1} \bmod R, R=2^{l}>\frac{|\pi|}{\sqrt{2}}$
output: $M=\mu(Z)=Z R^{-1} \bmod \pi$
1: $t=Z \pi^{\prime} \mathrm{m} d \mathrm{~d} R \quad / /$ bitwise AND of Re, Im with $R-1$
2: $q=(Z+t \pi) \operatorname{div} R \quad / /$ shift Re, Im right by l
4 !
Final reduction on q

Proposed reduction

input: Gaussian integers z, μ, π, integer numbers β, γ, δ output: Gaussian integer $r=z \bmod \pi$
$\begin{array}{ll}\text { 1: } & q_{1} \leftarrow z \cdot d i v \beta^{k+\delta} \\ \text { 2: } & q_{2} \leftarrow q_{1} \mu \\ \text { 3: } & q_{3} \leftarrow q_{2} \mathrm{fdiv} \beta^{\gamma-\delta} \\ \text { 4: } & r_{1} \leftarrow z \bmod \beta^{\gamma-\delta} \\ \text { 5: } & r_{2} \leftarrow q_{3} \pi \bmod \beta^{\gamma-\delta} \\ \text { 6: } & r^{\prime} \leftarrow r_{1}-r_{2} \\ & \quad\end{array}$
Final reduction on r^{\prime}

The final reduction is not illustrated since it is identical
Two complex multiplications by a constant
One complex addition/subtraction

Complexity comparison

- Naïve modulo reduction $x \bmod \pi=x-\left[\frac{x \pi^{*}}{\pi \pi^{*}}\right] \cdot \pi[6]$
- The costs for digit operations are not considered
- The Montgomery domain transformations are defined in [2]

	Addition / subtraction	Multiplication by a constant	Complex number division
Naïve reduction [6]	1	2	$1<$
Montgomery reduction [2]	1	2	-
Montgomery domain transformations [2]	2	5	-
Proposed reduction	1	2	-

Conclusion

A novel and efficient reduction algorithm for Gaussian integers based on Barrett's concepts is presented

- Suitable for arbitrary Gaussian integer moduli
- Providing similar computational complexity as the Montgomery reduction for Gaussian integers
- Not requiring domain transformations as the Montgomery reduction
- Suitable for any application where modular arithmetic over Gaussian integers is needed (not only ECC !)

Thanks for your attention

Questions !?

[^0]: [1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132. [2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.
 [3] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special Gaussian Integer Moduli, in 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France, Sept. 2022
 Page 2 Unrestricted \| © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

[^1]: 1] M. Safieh, Algorithms and Architectures for Cryptography and Source Coding in Non-Volatile Flash Memories, in Springer 2021, ISBN 978-3-658-34458-0, pp. 1-132. 2] M. Safieh, J. Freudenberger, Montgomery Reduction for Gaussian Integers, in Cryptography. 2021; 5(1):6.
 [3] M. Safieh and F. De Santis, Efficient Reduction Algorithms for Special Gaussian Integer Moduli, in 29th IEEE Symposium on Computer Arithmetic, ARITH 2022, Lyon, France, Sept. 2022.
 Page 3 Unrestricted \| © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

[^2]: (ZINC), May 2020, pp. 231-236.
 Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85-96
 Page 6 Unrestricted \| © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

[^3]: (ZINC), May 2020, pp. 231-236.
 Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85-96
 Page 7 Unrestricted | © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

[^4]: (ZINC), May 2020, pp. 231-236.
 Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85-96
 Page 8 Unrestricted \| © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

[^5]: (ZINC), May 2020, pp. 231-236.
 Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 85-96
 Page 9 Unrestricted \| © Siemens 2023 | Dr. Malek Safieh | Siemens Technology | 2023-09-04

