Modulo-(29 — 3) Multiplication with Fully Modular
Partial Product Generation and Reduction

Ghassem Jaberipur?, Saeid Gorgin!, Navid Ahamadian?, Jeong-A Lee!

!Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea
’Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, lran

30" |EEE International Symposium on Computer Arithmetic

Jeong-A Lee

Professor, Department of Computer Engineering, Chosun University.

Jeong-A Lee received a B.S. degree (Hons.) in computer engineering from Seoul National University, Seoul, South Korea, in 1982, an M.S. degree in
computer science from Indiana University Bloomington, Bloomington, IN, USA, in 1985, and a Ph.D. degree in computer science from the University of
~ California at Los Angeles, Los Angeles, CA, USA, in 1990, From 1990 to 1995, she was an Assistant Professor with the Department of Electrical and

I Computer Engineering, University of Houston, Houston, TX, USA. Since 1995, she has been with Chosun University, Gwangju, South Korea. From 2008
to 2009, she served as a Program Director of the ECE Division, at the National Research Foundation of Korea. Dr. Lee is a member of the National
Academy of Engineering in South Korea. She has authored or co-authored more than 100 reviewed journal and conference papers. Her current interests
include high-performance computer architectures, memory architecture, approximate computing, self-aware computing, and reliable computing.

Ghassem Jaberipur
Professor for the Brain Pool Program in Chosun
University

Dr. Ghassem Jaberipur, Born in Tehran on the 26th of June
1952, is a graduate of UCLA, UW-Madison, and Sharif
University of Technology (SUT). After 43 years of academic life
based at Shahid Beheshti University (SBU), he retired on
August 23 2022, as a Professor of the Computer Science and
Engineering Department, Tehran, Iran. He is currently (as of
September, 1st 2022) with the School of IT Convergence
Engineering, Chosun University, Gwangju, South Korea, as a
Professor for the Brain Pool Program. Besides SBU, he has
taught for 4 decades in SUT and Tehran University. In 2016, he
received the SUT semi-centennial medal as one of the 50
distinguished SUT graduates for his scientific achievements and
services to Iranian society. Dr. Jaberipur’'s main research is in
the field of Computer Arithmetic, for which he received a 2020
international Khwarizmi award.

Saeid Gorgin
Associate Professor of Computer Engineering at IROST
& Brain Pool Program in Chosun University

" SAEID GORGIN received the B.S. degree in computer engineering
"« from Azad University South Tehran Branch, Tehran, Iran, in 2001,

the M.S. degree in computer engineering from Azad University
Tehran Science and Research Branch, Tehran, in 2004, and the
Ph.D. degree in computer system architecture from Shahid
Beheshti University, Tehran, in 2010. He is currently an Associate
Professor of computer engineering with the Department of Electrical
Engineering and Information Technology, Iranian Research
Organization for Science and Technology, Tehran. He is also a
Visiting Scientist at the Computer Systems Laboratory, Department
of Computer Engineering, Chosun University, South Korea. His
current research interests include computing systems, Computer
Arithmetic, Hardware Accelerators, Machine Learning, and FPGA.

Outline

Limited DR of the most popular RNS moduliset t = {29 — 1,29,29 + 1}

Balanced inter-modauli arithmetic speed

The challenge of appropriate additional moduli for higher DR

Existing T-balanced parallel prefix modulo-(29 — 3) adders

Modulo-(29 — 3) product via non-modular multiplication (2010 AND 2013)
Via semi-modular multiplication (2018)

The challenge of fully modular approach and the solution

Results: Only 2 extra CSA levels for modulo-(29 — 3) vs. modulo-(29 — 1)

Results: Speedup and energy saving at the cost of more area and power consumption

Most frequently used moduli forms:
mq = Zq—l,mz — Zq,m3 =294+1

X (3g-bit) Y (3q-bit)

M JC e JC .) e JC e JC M)

Balanced speed \ W

with parallel prefix adders and [Pf |y } [X - ¥ } {j{ - }
fully modular multipliers g -

in the 3 residue channels

g-bit g-bit g-bit

[Reverse converter j

X7 Y| (3q-bit)

M = my X n, X n

Modulo-(29 — 1) multiplication

Non-modular + forward conversion

X

] Modulo-15
] residues

] «—Non-modular
PPM

modular
PPM—

1°* Reduction

2" reduction

Non-modular product

Forward conversion

Modular Product

Fully modular
X m n

Bl Just for illustration
Not actually produced

Number of reduction levels L(q)

Modulo-(29 — 1): g X g MPPM
2x3=3;{3x3‘:4;4><5=6;6><3=9
2 2 2 2

3

2 (E)L(Q) ~q= L(q) log% ~ log% = L(q) ~ [1.7logﬂ

gq=4= L(q) =[1.7]=2(4 -3 - 2)
qgq=6= L(qg) =[1.7log3]|=3(6—-4..)
q=9= L(q)=[17log4.5] =4(9 > 6..)

Higher dynamic range without speed loss

s 1={29-1,29,29 + 1}:
> 239 bit DR
» +and X: 0(log q) delay
" |ncreasing g for higher DR = Speed loss
= Higher DR with the same g7
" Yes, via augmenting T with {2946, for 6 > 1}
* Challenge: t-balanced +, X and | X|,,

T

The challenge of additional moduli of the form (29 + §)

= t-balanced PPA for 6 = 3 exist
= Q1l: Mod-(29 4+ 3) X: As fast as Mod-(29 + 1) x? NO!
= Q2: Complexity of | X|,,, form = 29 + 3?

= Do Q1 and Q2 share the same problem? Yes!

Q1: 1st difference:

Deeper MPPM (2g — 1 vs. g)

Modulo 29 — 3

Modulo 29 — 1

23

21 20 25 25 24

22

23

2> 2

26

Q1: 2nd Difference:
Deepening of Column 1 by two sources

129¢|59_3 = |(29 — 3)c + 3c|9_3 =3c=2c+

Column 1 receives carry bits from:

1) Column g — 1 via modular reduction

2) Column 0, via regular reduction:

T

Q1: 3rd difference

1) Non-modular product: P = A X B = 29P, + P,
2) 2q-bit P to residue conversion:

|A X Blzq_3 o |2th + Pl|2q—3 — |3Ph + Pllzq_g
(for previous solutions of 2010 and 2013,
while the one of 2018 computes A= {%‘)

No reason giving for
not using fully modular approach as in modulo 29 — 1?

T

Probable reason:
Modulo-(29 — 3) Wallace PPR = Loop

¥ P|F 2 ¥ 2
RO
Bi= s =1
.‘. JA080 Lewel 2
Lo @ B|(@){)(7) = :
SIOIE
2/ A Level 3 - |
|
F . Lawvel 4 ‘@@8@
|
Level 1 -
I/&'—;‘ m
= q — 4‘ Level 5 -
U
M

Wallace-fail in residue generation |3P;, + P;|,a_3

2010: Not addressed; 2013: Uses Dadda-like; 2018: Not applicable

Wallace = Loop BELERIE

Q2: Modulo-(24 — 3) residue generation

Example moduli set: {29,29 + 1,29 + 3}

5g-bit number X to | X|,q_3 residue:

X =2%X, + 239X, + 229X, + 29X, + X, =

| X|oa_3 = 81X, + 27X5 + 9X, + 3X; + Xo|,a_3

=|(2°+2*+ DX, + 2*+ 23+ 2+ DX3+ 23+ DX, + (2 + DX, + Xoloa_3
Modular multi-operand addition with

28 (=12+16) deep Columnl1l = 2qg —1 =28 =

As complex as PPR for modulo-(21* — 3) multiplication

T

Proposed design: Dadda-like reduction for g = 4

o
(n_u_w)
(= _w)
ELICERDICXCIDIGEID &
(n = w LECHCL)
O
@AW
C
@ =W
G

Proposed design: The general Algorithm

Do while there exists a column with a depth more than 2

a. Column #0: Apply % FA reductions = d, = d, — 2 % + dq3_1‘;
b. Column #1: Apply % FA reductions = d; = dq — 2 % + % + {dqg_ll;

c. Columns2<i<gqg-1:

Fori = 2toq — 1 do Apply {%‘ FA reductions = d; = d; — 2 {%‘ﬂdi_l‘;

3

End;

T

Number of reduction Levels L

For Modulo 29 — 1:

L(q) = [1-71093\; p=Illogql = q=2Py(1<y<2)=
L) ~[1.7(p—-1+logy)|=[1.7(p— D] < L(q) < [1.7p]

L for Modulo 29 — 3 via the proposed algorithm =~ £L(2q), since
di=2q—-1,dy=2q+1
d0=q,dq_1=q+1,db=d0+dq_1=q+q+1

Doubling g in [1.7(p — 1)| < L(q) < [1.7p]| extends the bounds by at most [1. 7] = 2
— Only 2 extra levels

Schematic comparison of modulo-(29 — 3) multipliers

PPG
AxB

Y

[Reduction tree J

h

r

h

r

CPA

h d

Maodular

(4:1) compressor

!

(a)

PPG
AxB

1

[Reduction tree

1

h 4 ¥

2-Level
(4:2) compressor

|

¥ ¥y

[Modular adder }

|

PPG
AxB

PPG
Ax3B

=)s

1

¥

¥

{ Reduction tree }

3A

vy

L
v v

[{4:2} compresrsor}

X

[Modular adder]

|

(c)

Modular
FPG
AxB

¥

Modular Reduction
tree

¥ h 4

[Modular adder J

Modulo-13 example of Seidel’s design

AXB=29P, +P,q=4
— a3b0 + azbl + albz + a0b3

a, by a, by agby
asb, a, by agby
azb, | azb, apb,
asbs | azbs | a;b;
P, —A

21 A +P, A= |2
The gray shaded parts are not implemented
AX3B =A%, + 235, +2°B, + 2'B, + b,) = 2* X 3P, + 3p,

128 | 64 32 16 8 4 2 1
a;B; | asby | azby | a;by | aphg
By = by + b azB; | @3B, | @3By | 4By | agB;
B, = by + by asB; | a;B; | a4B3 | a4B, | ayB,
B3 = b3 + by | azbs | azb3 | a;1b3 | aphbs | ayBs

3P, —3A+ U

Modulo-13 example of Seidel’s design ...

|A X Blya_3 = |3P, +Pjla-3,q9 = 4
Actual column depth | 5 6 7 8
By = by + by oy | @yby | Goby | a3B
By =b; + by @by | @by | 3B, | B,
B3 = b3 + b, @bz | a3B; | a,B; a,B;
a3b3 a2b3 a1b3 a0b3
3A — L
P
L= a3b0 + azbl ~+ a1b2 —+ a0b3, A: ‘2_(5

Modulo-13 example of Seidel’s design ...

AXB=21P, + P, q=

u = azbg + a;b; + a;b, + agbs
az bg a; by aoby
asb, a; by aghy
azb, | axb, agb,
asbs | azbs | a bs

P =& 21 A +P, A= |2k

The gray shaded parts are not implemented
AX3B = A(2%; 4+ 235, + 2°B, + 2'B, + by) = 2* x 3P, + 3p,

128 | 64 32 16 8 4 2 1
AzB; | asby | azby | a;by | aghy
By = by + by as3B; | a;B, | @B, | a1By | aoB;
By = by + by azB; | a;B; | a1B; | a1B5 | agB,
By =bs +b, | azhy | apb; | ajb; | agh; | ayBs
3P, —3A+0
|A X Blya_s = 3P, +Bilz1-5,9 = 4
Actual column depth | 5 6 7 8
asby | azby | aihy aoby
B, = b + by as by | a;by | aghy asBy
B, = b, + by a.b, | agh; | a3B, a,B,
By = by + b, aghs | a3Bs | a;B4 a, B
asbs | azhbs | a;bs agbs
3A—U

Our in-house software

import math
import array as arr

from termcolor import colored

dot = "\uz@22"
blank = " "

def print_hardware(results):
if len(results) > @:
delimiter = "--" * ipt(1.5 * len(results[ae])})
for i in range(e, len(results}):
for hardware in results[i]:
if hardware == blank:
hardware = " -"
print(hardware, end=" "}
print(})
print({delimiter)

def print_black(values, is_hardware_needed, results):
row = len({values})
col = len(values[e]}
NuUmFA = @
delimiter = "--" * (int{z.5 * col} + 3}
for i in range(e, row):
is_blank = True
for j in range(e, col}):
print(values[i][j], end=" "}
if values[i][j] == dot:
is_blank = False

if is_hardware_needed:
print hardware needed for reduction
print(" ", end=" ")
if i == @ and len(results}!-e:
temp = [@]*len(results[e])
for result in results:
for x in range(e, len(result)):
if result[x] != blank:
temp[x] += 1
for value in temp:
print(value, end=" "}
numFA = numFA + value
print(})
if is_blank:
break

print({delimiter)

return numFA

def print_celored(values, colors):
row = len(values})

EEE R

Number of
Number of
Number of

F oE ok R OB R R £ F ¥ =

22231

levels with Proposed Algorithm are: 5

FullAdders used for reduction: 180 + 7 + 5 + 4 + 4 =

levels with Wallace and without EAC are:

a

3e

= R X E R E R R E X K R X E R ¥ E R %

223332

122231

. 111211

. 11111%@

111811

eeelie

Number of levels with Proposed Algorithm are: &
Number of Fulladders used for reduction: 15 + 11 + 7 # 5+ 5 + 2 = 45
Number of levels with wallace and without EAC are: 5

EREEEN B NN

F1::3:3%331

113111331321

11311131112

11111311118

Evaluations and Comparisons

100G

90
80
70
60
50
40
30

20 q
4 8 16 32 64 128
s (O] e [1(] — (1]] Proposed

Evaluations and Comparisons ...

Area Delay Power PDP
pm? Ratio ns Ratio || mW | Ratio pj Ratio
q=4
Home j§j| 36314 1 4.34 1 0.73 1 3.19 1
[9] 37449 1.03 6.10 1.41 0.80 1.09 4.89 .53
[10] 39349 1.08 6.41 1.48 0.86 1.17 5.52 1.73
q=28
Home J| 158935 1 5.41 1 4.50 1 24.36 1
[9] 132620 | 0.83 8.92 1.65 3.90 0.87 34.83 1.43
[10] 137372 1 0.86 0.70 1.24 4.11 0.91 27.58 .13
q=16
Home J| 661472] 6.32 1 22.80 1 144.11 1
[9] 530077 | 0.80 13.83 | 2.19 18.03 | 0.79 || 249.39 1.73
[10] 545047 ¢ 0.82 8.40 1.33 18.88 | 0.83 158.60 1.10

Evaluations and Comparisons ...

° q=8

Area Delay Power PDP

B Home M [9] [10]

INn short

Fully modular approach in the realization of modulo-(29 — 3) multiplier results in:

v'Less delay
v'Less energy

v"More speed-balance with companion moduli 29 + 1

Ongoing and future relevant research:
» Fully modular modulo-(29 + 3) multiplier

> Study of fully modular approach for generic modulo-(29 — §) multiplier

Greetings from Chosun University

Evaluations and Comparisons

70 70 70
65 65 65
60 60 60
55 55 55
50 50 50
45 45 45
40 40 40
35 35 35
30 30 30
25 25 25
20 20 20
15 15 15
10 10 10
| i 1l I
, man B — : N :
Area Delay Power Area Delay Power Area Delay Power

EHome m[9] m[10] EHome m[9] m[10] mHome m[9] m[10]

Evaluations and Comparisons

2.5
elay Power PDP Area Delay Power PDP Area Delay Power PDP
q=4 q=8 q=16

B Home M [9] [10]

1.5

0.5

Evaluations and Comparisons

7
40 300
6 35
250
30
5
200
25
4
20 150
3
15
100
2
10
1 50
II | I
Area Delay Power PDP Area Delay Power Area Delay Power

HHome H[9] [10]

H Home H[9] [10] B Home M [9 10

Evaluations and Comparisons

250 250 250
240 240 240
230 230 230
220 220 220
210 210 210
200 200 200
190 190 190
180 180 180
170 170 170
160 160 160
150 150 150
140 140 140
130 130 130
120 120 120
110 110 110
100 100 100
90 90 90
80 80 80
70 70 70
60 60 60
50 50 50
40 40 40
30 30 30
20 20 20
10 10 I 10 l I I
o =mmm m — - 0 I 1 | - 0 |
Area Delay Power PDP Area Delay Power Area Delay Power PDP

H Home MW [9] m[10] EHome m[9] m[10] H Home MW [9] m[10]

	Slide 1
	Slide 2
	Slide 3: Outline
	Slide 4: Most frequently used moduli forms: bold italic m sub bold 1 equals 2 to the q minus 1, superscript base , m sub 2 equals 2 , end base , to the q , bold italic m sub bold 3 equals 2 to the q plus 1
	Slide 5: Modulo-(2 to the q minus 1) multiplication
	Slide 6: Number of reduction levels script cap L open paren q close paren
	Slide 7: Higher dynamic range without speed loss
	Slide 8: The challenge of additional moduli of the form (2 to the q plus or minus delta)
	Slide 9: Q1: 1st difference: Deeper MPPM (2 q minus 1 vs. q)
	Slide 10: Q1: 2nd Difference: Deepening of Column 1 by two sources
	Slide 11: Q1: 3rd difference
	Slide 12: Probable reason: Modulo-(2 to the q minus 3) Wallace PPR ⟹ Loop
	Slide 13: Wallace-fail in residue generation absolute value3 cap P sub h plus cap P sub l , , end absolute value sub , 2 to the q minus 3 end subscript
	Slide 14: Q2: Modulo-(2 to the q minus 3) residue generation
	Slide 15: Proposed design: Dadda-like reduction for bold italic q equals bold 4
	Slide 16: Proposed design: The general Algorithm
	Slide 17: Number of reduction Levels bold script cap L
	Slide 18: Schematic comparison of modulo-(2 to the q minus 3) multipliers
	Slide 19: Modulo-13 example of Seidel’s design
	Slide 20: Modulo-13 example of Seidel’s design …
	Slide 21: Modulo-13 example of Seidel’s design …
	Slide 22: Our in-house software
	Slide 23: Evaluations and Comparisons
	Slide 24: Evaluations and Comparisons …
	Slide 25: Evaluations and Comparisons …
	Slide 26: In short
	Slide 27: Greetings from Chosun University
	Slide 28: Evaluations and Comparisons
	Slide 29: Evaluations and Comparisons
	Slide 30: Evaluations and Comparisons
	Slide 31: Evaluations and Comparisons

