Modulo-($2^{q}-3$) Multiplication with Fully Modular Partial Product Generation and Reduction

Ghassem Jaberipur ${ }^{1}$, Saeid Gorgin ${ }^{1}$, Navid Ahamadian², Jeong-A Lee ${ }^{1}$
${ }^{1}$ Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea
${ }^{2}$ Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

30 ${ }^{\text {th }}$ IEEE International Symposium on Computer Arithmetic

Jeong-A Lee
 Professor, Department of Computer Engineering, Chosun University.

Jeong-A Lee received a B.S. degree (Hons.) in computer engineering from Seoul National University, Seoul, South Korea, in 1982, an M.S. degree in computer science from Indiana University Bloomington, Bloomington, IN, USA, in 1985, and a Ph.D. degree in computer science from the University of California at Los Angeles, Los Angeles, CA, USA, in 1990, From 1990 to 1995, she was an Assistant Professor with the Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. Since 1995, she has been with Chosun University, Gwangju, South Korea. From 2008 to 2009, she served as a Program Director of the ECE Division, at the National Research Foundation of Korea. Dr. Lee is a member of the National Academy of Engineering in South Korea. She has authored or co-authored more than 100 reviewed journal and conference papers. Her current interests include high-performance computer architectures, memory architecture, approximate computing, self-aware computing, and reliable computing.

Ghassem Jaberipur

Professor for the Brain Pool Program in Chosun
University

Dr. Ghassem Jaberipur, Born in Tehran on the 26th of June 1952, is a graduate of UCLA, UW-Madison, and Sharif University of Technology (SUT). After 43 years of academic life based at Shahid Beheshti University (SBU), he retired on August 23 2022, as a Professor of the Computer Science and Engineering Department, Tehran, Iran. He is currently (as of September, 1st 2022) with the School of IT Convergence Engineering, Chosun University, Gwangju, South Korea, as a Professor for the Brain Pool Program. Besides SBU, he has taught for 4 decades in SUT and Tehran University. In 2016, he received the SUT semi-centennial medal as one of the 50 distinguished SUT graduates for his scientific achievements and services to Iranian society. Dr. Jaberipur's main research is in the field of Computer Arithmetic, for which he received a 2020 international Khwarizmi award.

Saeid Gorgin

Associate Professor of Computer Engineering at IROST \& Brain Pool Program in Chosun University

SAEID GORGIN received the B.S. degree in computer engineering from Azad University South Tehran Branch, Tehran, Iran, in 2001, the M.S. degree in computer engineering from Azad University Tehran Science and Research Branch, Tehran, in 2004, and the Ph.D. degree in computer system architecture from Shahid Beheshti University, Tehran, in 2010. He is currently an Associate Professor of computer engineering with the Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran. He is also a Visiting Scientist at the Computer Systems Laboratory, Department of Computer Engineering, Chosun University, South Korea. His current research interests include computing systems, Computer Arithmetic, Hardware Accelerators, Machine Learning, and FPGA.

Outline

- Limited DR of the most popular RNS moduli set $\tau=\left\{2^{q}-1,2^{q}, 2^{q}+1\right\}$
- Balanced inter-moduli arithmetic speed
- The challenge of appropriate additional moduli for higher DR
- Existing τ-balanced parallel prefix modulo-($2^{q}-3$) adders
- Modulo-($2^{q}-3$) product via non-modular multiplication (2010 AND 2013)
- Via semi-modular multiplication (2018)
- The challenge of fully modular approach and the solution
- Results: Only 2 extra CSA levels for modulo-($\left.2^{q}-3\right)$ vs. modulo- $\left(2^{q}-1\right)$
- Results: Speedup and energy saving at the cost of more area and power consumption

Most frequently used moduli forms: $m_{1}=2^{q}-1, m_{2}=2^{q}, m_{3}=2^{q}+1$

Balanced speed with parallel prefix adders and fully modular multipliers in the $\mathbf{3}$ residue channels

Modulo-($2^{q}-1$) multiplication

Non-modular + forward conversion		Fully modular
$\times \begin{array}{ccccc} \\ \times & \square & \square & \square & \square \\ & \square & \square & \square & \square\end{array}$	Modulo-15 residues	$\begin{array}{rccc}\times & \square & \square & \square \\ \square & \square \\ \\ \square & \square & \square & \square\end{array}$
	\leftarrow Non-modular PPM modular PPM \rightarrow	
\square	$1{ }^{\text {st }}$ Reduction	$\begin{array}{rrrrr}\square \\ \square & \square & \square & \square \\ \square & \square & \square & \square \\ \square & \square & \square & \square\end{array}$
$\begin{array}{ccccccc}\square \\ \square & \square & \square & \square & \square & \square & \square \\ \square & \square & \square & \square & & \end{array}$	$2^{\text {nd }}$ reduction	$\square \square \square \square \square \square \square \square$
$\square \square \square \square \square \square$	Non-modular product	Just for illustration Not actually produced
$\begin{array}{llll}\square & \square & \square & \square \\ \square & \square & \square & \square\end{array}$	Forward conversion	
■ ■ ■	Modular Product	

Number of reduction levels $\mathcal{L}(q)$

Modulo- $\left(2^{q}-1\right): q \times q$ MPPM

$$
\begin{gathered}
2 \times \frac{3}{2}=3 ;\left[3 \times \frac{3}{2}\right\rfloor=4 ; 4 \times \frac{3}{2}=6 ; 6 \times \frac{3}{2}=9 \\
2\left(\frac{3}{2}\right)^{\mathcal{L}(q)} \approx q \Rightarrow \mathcal{L}(q) \log \frac{3}{2} \approx \log \frac{q}{2} \Rightarrow \mathcal{L}(q) \approx\left\lceil 1.7 \log \frac{q}{2}\right\rceil \\
q=4 \Rightarrow \mathcal{L}(q)=\lceil 1.7\rceil=2(4 \rightarrow 3 \rightarrow 2) \\
q=6 \Rightarrow \mathcal{L}(q)=\lceil 1.7 \log 3\rceil=3(6 \rightarrow 4 \ldots) \\
q=9 \Rightarrow \mathcal{L}(q)=\lceil 1.7 \log 4.5\rceil=4(9 \rightarrow 6 \ldots)
\end{gathered}
$$

Higher dynamic range without speed loss

- $\tau=\left\{2^{q}-1,2^{q}, 2^{q}+1\right\}$:
$>2^{3 q}$ bit DR
$>+$ and $\times: O(\log q)$ delay
- Increasing q for higher $D R \Rightarrow$ Speed loss
- Higher DR with the same \boldsymbol{q} ?
- Yes, via augmenting τ with $\left\{2^{q} \pm \delta\right.$, for $\left.\delta>1\right\}$
- Challenge: τ-balanced,$+ \times$ and $|X|_{m}$

The challenge of additional moduli of the form $\left(2^{q} \pm \delta\right)$

- τ-balanced PPA for $\delta=3$ exist
- Q1: Mod- $\left(2^{q} \pm 3\right) \times$: As fast as Mod- $\left(2^{q} \pm 1\right) \times$? NO!
- Q2: Complexity of $|\boldsymbol{X}|_{m}$ for $m=2^{q} \pm 3$?
- Do Q1 and Q2 share the same problem? Yes!

Q1: 1st difference:

Deeper MPPM ($2 q-1$ vs. q)
Modulo $2^{q}-1 \quad$ Modulo $2^{q}-3$

Q1: 2nd Difference: Deepening of Column 1 by two sources
 $$
\left|2^{q} c\right|_{2^{q}-3}=\left|\left(2^{q}-3\right) c+3 c\right|_{2^{q}-3}=3 c=2 c+c
$$

Column 1 receives carry bits from:

1) Column $q-\mathbf{1}$ via modular reduction
2) Column 0 , via regular reduction:

Q1: 3rd difference

1) Non-modular product: $P=A \times B=2^{q} P_{h}+P_{l}$
2) $\quad 2 q$-bit P to residue conversion:
$|A \times B|_{2^{q}-3}=\left|2^{q} P_{h}+P_{l}\right|_{2^{q}-3}=\left|3 P_{h}+P_{l}\right|_{2^{q}-3}$
(for previous solutions of 2010 and 2013, while the one of 2018 computes $\left.\triangle=\left\lfloor\frac{p_{l}}{2^{q}}\right\rfloor\right)$ No reason giving for
not using fully modular approach as in modulo $2^{q}-1$?

Probable reason:

Modulo- $\left(2^{q}-3\right)$ Wallace PPR \Longrightarrow Loop

Wallace-fail in residue generation $\left|3 P_{h}+P_{l}\right|_{2} q_{-3}$

2010: Not addressed; 2013: Uses Dadda-like; 2018: Not applicable

Q2: Modulo-($\left.2^{q}-3\right)$ residue generation

Example moduli set: $\left\{2^{q}, 2^{q} \pm 1,2^{q} \pm 3\right\}$
$5 q$-bit number X to $|X|_{2^{q}-3}$ residue:
$X=2^{4 q} X_{4}+2^{3 q} X_{3}+2^{2 q} X_{2}+2^{q} X_{1}+X_{0} \Rightarrow$
$|X|_{2^{q}-3}=\left|81 X_{4}+27 X_{3}+9 X_{2}+3 X_{1}+X_{0}\right|_{2 q-3}$
$=\left|\left(2^{6}+2^{4}+1\right) X_{4}+\left(2^{4}+2^{3}+2+1\right) X_{3}+\left(2^{3}+1\right) X_{2}+(2+1) X_{1}+X_{0}\right|_{2 q-3}$
Modular multi-operand addition with
28 ($=12+16$) deep Column $1 \Rightarrow 2 q-1=28 \Rightarrow$
As complex as PPR for modulo-($\left(2^{14}-3\right)$ multiplication

Proposed design: Dadda-like reduction for $\boldsymbol{q}=\mathbf{4}$

Proposed design: The general Algorithm

Do while there exists a column with a depth more than 2
a. Column \#0: Apply $\left\lfloor\frac{d_{0}}{3}\right\rfloor$ FA reductions $\Rightarrow d_{0}=d_{0}-2\left\lfloor\frac{d_{0}}{3}\right\rfloor+\left\lfloor\frac{d_{q-1}}{3}\right\rfloor$;
b. Column \#1: Apply $\left\lfloor\frac{d_{1}}{3}\right\rfloor$ FA reductions $\Rightarrow d_{1}=d_{1}-2\left\lfloor\frac{d_{1}}{3}\right\rfloor+\left\lfloor\frac{d_{0}}{3}\right\rfloor+\left\lfloor\frac{d_{q-1}}{3}\right\rfloor$;
c. Columns $2 \leq i \leq q-1$:

For $i=2$ to $q-1$ do Apply $\left\lfloor\frac{d_{i}}{3}\right\rfloor$ FA reductions $\Rightarrow d_{i}=d_{i}-2\left\lfloor\frac{d_{i}}{3}\right\rfloor+\left\lfloor\frac{d_{i-1}}{3}\right\rfloor$;
End;

Number of reduction Levels \mathcal{L}

For Modulo $2^{q}-1$:

$$
\begin{aligned}
& \mathcal{L}(q) \approx\left\lceil 1.7 \log \frac{q}{2}\right\rceil ; \quad p=\lfloor\log q\rfloor \Rightarrow q=2^{p} \gamma(1 \leq \gamma<2) \Rightarrow \\
& \mathcal{L}(q) \approx\lceil 1.7(p-1+\log \gamma)\rceil \Rightarrow\lceil 1.7(p-1)\rceil \leq \mathcal{L}(q) \leq\lceil 1.7 p\rceil
\end{aligned}
$$

\mathcal{L} for Modulo $2^{q}-3$ via the proposed algorithm $\approx \mathcal{L}(2 q)$, since
$d_{1}=2 q-1, d_{0}^{\prime}=2 q+1$
$d_{0}=q, d_{q-1}=q+1, d_{0}^{\prime}=d_{0}+d_{q-1}=q+q+1$

Doubling q in $\lceil 1.7(p-1)\rceil \leq \mathcal{L}(q) \leq\lceil 1.7 p\rceil$ extends the bounds by at most $\lceil 1.7\rceil=2$
\Rightarrow Only 2 extra levels

Schematic comparison of modulo-($2^{q}-3$) multipliers

Modulo-13 example of Seidel's design

$A \times B=2^{q} P_{h}+P_{l}, q=4$							
			$\quad a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}$				
			$a_{3} b_{0}$	$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$	
		$a_{3} b_{1}$	$a_{2} b_{1}$	$a_{1} b_{1}$	$a_{0} b_{1}$		
	$a_{3} b_{2}$	$a_{2} b_{2}$	$a_{1} b_{2}$	$a_{0} b_{2}$			
$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$				
$P_{h}-\triangle$			$\left.2^{q} \triangle+P_{l}, \triangle=\left\lvert\, \frac{P_{l}}{2^{q}}\right.\right\rfloor$				

The gray shaded parts are not implemented

$A \times 3 B=A\left(2^{4} b_{3}+2^{3} B_{3}+2^{2} B_{2}+2^{1} B_{1}+b_{0}\right)=2^{4} \times 3 P_{h}+3 p_{l}$								
	128	64	32	16	8	4	2	1
				$a_{3} B_{1}$	$a_{3} b_{0}$	$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$
$B_{1}=b_{1}+b_{0}$			$a_{3} B_{2}$	$a_{2} B_{2}$	$a_{2} B_{1}$	$a_{1} B_{1}$	$a_{0} B_{1}$	
$B_{2}=b_{2}+b_{1}$		$a_{3} B_{3}$	$a_{2} B_{3}$	$a_{1} B_{3}$	$a_{1} B_{2}$	$a_{0} B_{2}$		
$B_{3}=b_{3}+b_{2}$	$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$	$a_{0} B_{3}$			
	$3 P_{h}-3 \Delta+\sqcup$							

Modulo-13 example of Seidel's design ...

$\|A \times B\|_{2} q_{-3}=\left\|3 P_{h}+P_{l}\right\|_{2} q_{-3}, q=4$				
Actual column depth	5	6	7	8
	$a_{3} b_{0}$	$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$
$B_{1}=b_{1}+b_{0}$	$a_{2} b_{1}$	$a_{1} b_{1}$	$a_{0} b_{1}$	$a_{3} B_{1}$
$B_{2}=b_{2}+b_{1}$	$a_{1} b_{2}$	$a_{0} b_{2}$	$a_{3} B_{2}$	$a_{2} B_{2}$
$B_{3}=b_{3}+b_{2}$	$a_{0} b_{3}$	$a_{3} B_{3}$	$a_{2} B_{3}$	$a_{1} B_{3}$
	$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$
				$3 \triangle-\sqcup$
$\sqcup=a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}, \Delta=\left\|\frac{P_{l}}{2^{q}}\right\|$				

Modulo-13 example of Seidel's design ...

$A \times B=2^{q} P_{h}+P_{l}, q=4$							
		U			$=a_{3} b_{0}+a_{2} b_{1}+a_{1} b_{2}+a_{0} b_{3}$		
			$a_{3} b_{0}$	$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$	
		$a_{3} b_{1}$	$a_{2} b_{1}$	$a_{1} b_{1}$	$a_{0} b_{1}$		
	$a_{3} b_{2}$	$a_{2} b_{2}$	$a_{1} b_{2}$	$a_{0} b_{2}$			
$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$				
$P_{h}-\Delta$			$2^{q} \Delta+P_{l}, \Delta=\left\|\frac{P_{l}}{2 q}\right\|$				

The gray shaded parts are not implemented								
$A \times 3 B=A\left(2^{4} b_{3}+2^{3} B_{3}+2^{2} B_{2}+2^{1} B_{1}+b_{0}\right)=2^{4} \times 3 P_{h}+3 p_{l}$								
	128	64	32	16	8	4	2	1
				$a_{3} B_{1}$	$a_{3} b_{0}$	$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$
$B_{1}=b_{1}+b_{0}$			$a_{3} B_{2}$	$a_{2} B_{2}$	$a_{2} B_{1}$	$a_{1} B_{1}$	$a_{0} B_{1}$	
$B_{2}=b_{2}+b_{1}$		$a_{3} B_{3}$	$a_{2} B_{3}$	$a_{1} B_{3}$	$a_{1} B_{2}$	$a_{0} B_{2}$		
$B_{3}=b_{3}+b_{2}$	$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$	$a_{0} B_{3}$			
	$3 P_{h}-3 \Delta+$ U							

$\|A \times B\|_{2} q_{-3}=\left\|3 P_{h}+P_{l}\right\|_{2} q_{-3}, q=4$				
Actual column depth	5	6	7	8
	$a_{3} b_{0}$	$a_{2} b_{0}$	$a_{1} b_{0}$	$a_{0} b_{0}$
$B_{1}=b_{1}+b_{0}$	$a_{2} b_{1}$	$a_{1} b_{1}$	$a_{0} b_{1}$	$a_{3} B_{1}$
$B_{2}=b_{2}+b_{1}$	$a_{1} b_{2}$	$a_{0} b_{2}$	$a_{3} B_{2}$	$a_{2} B_{2}$
$B_{3}=b_{3}+b_{2}$	$a_{0} b_{3}$	$a_{3} B_{3}$	$a_{2} B_{3}$	$a_{1} B_{3}$
	$a_{3} b_{3}$	$a_{2} b_{3}$	$a_{1} b_{3}$	$a_{0} b_{3}$
				$3 \triangle-\sqcup$

Our in-house software

```
import math
from termcolor import colored
dot ="\u2e22"
def print_hardware(results)
    flen(results)
    derimiter = =--" * int(1.5 * len(results[0]))
    fori in range(e, len(results)),
        *)
            M hardware=
    cininint(hard
def print_black(values, is_hardware_needed, results):
    col = len(values[0])
    numFA=
    for i in range(
    is_blank = True
        for j in range(e, col)
        print(values[i][j], end=" ")
            f values[i][j] == do
            # is_hardware_needed:
            # print hardware needed for reduct
            if i == ө and len(results)!=
            f i=e and len(results):=e
                    *)
                    \temp[x] += 1
            for value in temp:
                M Print(value, end="")
    print()
        if is_blank:
    Mrint(delimiter)
```

${ }_{5}^{\text {Enter }} \mathrm{n}$:	
	22231
: . . .	
\ldots	
\ldots	
.	
\because	
: . . .	11221
$\ldots:$.	
\cdots	
\because	

222233232
Number of levels with Proposed Algorithm are
Number of Fulladders used for reduction: $1 e+7+5+4+4=30$
Number of levels with wallace and without EAC are
............................ 11121$\because: .:$..........................

enter 20

......................................

Evaluations and Comparisons

Evaluations and Comparisons ...

	Area		Delay		Power		PDP	
	μm^{2}	Ratio	$n s$	Ratio	$m W$	Ratio	$p j$	Ratio
	$q=4$							
Home	36314	1	4.34	1	0.73	1	3.19	1
[9]	37449	1.03	6.10	1.41	0.80	1.09	4.89	1.53
[10]	39349	1.08	6.41	1.48	0.86	1.17	5.52	1.73
	$q=8$							
Home	158935	1	5.41	1	4.50	1	24.36	1
[9]	132620	0.83	8.92	1.65	3.90	0.87	34.83	1.43
[10]	137372	0.86	6.70	1.24	4.11	0.91	27.58	1.13
	$q=16$							
Home	661472	1	6.32	1	22.80	1	144.11	1
[9]	530077	0.80	13.83	2.19	18.03	0.79	249.39	1.73
[10]	545047	0.82	8.40	1.33	18.88	0.83	158.60	1.10

Evaluations and Comparisons ...

- $q=8$

In short

Fully modular approach in the realization of modulo-($\left.2^{q}-3\right)$ multiplier results in:
\checkmark Less delay
\checkmark Less energy
\checkmark More speed-balance with companion moduli $2^{q} \pm 1$

Ongoing and future relevant research:
$>$ Fully modular modulo- $\left(2^{q}+3\right)$ multiplier
$>$ Study of fully modular approach for generic modulo- $\left(2^{q}-\delta\right)$ multiplier

Greetings from Chosun University

Evaluations and Comparisons

Evaluations and Comparisons

Evaluations and Comparisons

Evaluations and Comparisons

