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Outline

Limited DR of the most popular RNS moduliset t = {29 — 1,29,29 + 1}

Balanced inter-modauli arithmetic speed

The challenge of appropriate additional moduli for higher DR

Existing T-balanced parallel prefix modulo-(29 — 3) adders

Modulo-(29 — 3) product via non-modular multiplication (2010 AND 2013)
Via semi-modular multiplication (2018)

The challenge of fully modular approach and the solution

Results: Only 2 extra CSA levels for modulo-(29 — 3) vs. modulo-(29 — 1)

Results: Speedup and energy saving at the cost of more area and power consumption




Most frequently used moduli forms:
mq = Zq—l,mz — Zq,m3 =294+1
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Modulo-(29 — 1) multiplication

Non-modular + forward conversion

X

] Modulo-15
] residues

] «—Non-modular
PPM

modular
PPM—

1°* Reduction

2" reduction

Non-modular product

Forward conversion

Modular Product

Fully modular
X m n

Bl Just for illustration
Not actually produced




Number of reduction levels L(q)

Modulo-(29 — 1): g X g MPPM
2x3=3;{3x3‘:4;4><5=6;6><3=9
2 2 2 2

3

2 (E)L(Q) ~q= L(q) log% ~ log% = L(q) ~ [1.7logﬂ

gq=4= L(q) =[1.7]=2(4 -3 - 2)
qgq=6= L(qg) =[1.7log3]|=3(6—-4..)
q=9= L(q)=[17log4.5] =4(9 > 6..)




Higher dynamic range without speed loss

s 1={29-1,29,29 + 1}:
> 239 bit DR
» +and X: 0(log q) delay
" |ncreasing g for higher DR = Speed loss
= Higher DR with the same g7
" Yes, via augmenting T with {2946, for 6 > 1}
* Challenge: t-balanced +, X and | X|,,

T




The challenge of additional moduli of the form (29 + §)

= t-balanced PPA for 6 = 3 exist
= Q1l: Mod-(29 4+ 3) X: As fast as Mod-(29 + 1) x? NO!
= Q2: Complexity of | X|,,, form = 29 + 3?

= Do Q1 and Q2 share the same problem? Yes!




Q1: 1st difference:

Deeper MPPM (2g — 1 vs. g)

Modulo 29 — 3

Modulo 29 — 1
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Q1: 2nd Difference:
Deepening of Column 1 by two sources

129¢|59_3 = |(29 — 3)c + 3c|9_3 =3c=2c+

Column 1 receives carry bits from:

1) Column g — 1 via modular reduction

2) Column 0, via regular reduction:

T




Q1: 3rd difference

1) Non-modular product: P = A X B = 29P, + P,
2) 2q-bit P to residue conversion:

|A X Blzq_3 o |2th + Pl|2q—3 — |3Ph + Pllzq_g
(for previous solutions of 2010 and 2013,
while the one of 2018 computes A= {%‘)

No reason giving for
not using fully modular approach as in modulo 29 — 1?

T




Probable reason:
Modulo-(29 — 3) Wallace PPR = Loop
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Wallace-fail in residue generation |3P;, + P;|,a_3

2010: Not addressed; 2013: Uses Dadda-like; 2018: Not applicable

Wallace = Loop BELERIE




Q2: Modulo-(24 — 3) residue generation

Example moduli set: {29,29 + 1,29 + 3}

5g-bit number X to | X|,q_3 residue:

X =2%X, + 239X, + 229X, + 29X, + X, =

| X|oa_3 = 81X, + 27X5 + 9X, + 3X; + Xo|,a_3

=|(2°+2*+ DX, + 2*+ 23+ 2+ DX3+ 23+ DX, + (2 + DX, + Xoloa_3
Modular multi-operand addition with

28 (=12+16) deep Columnl1l = 2qg —1 =28 =

As complex as PPR for modulo-(21* — 3) multiplication

T




Proposed design: Dadda-like reduction for g = 4
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Proposed design: The general Algorithm

Do while there exists a column with a depth more than 2

a. Column #0: Apply % FA reductions = d, = d, — 2 % + dq3_1‘;
b. Column #1: Apply % FA reductions = d; = dq — 2 % + % + {dqg_ll;

c. Columns2<i<gqg-1:

Fori = 2toq — 1 do Apply {%‘ FA reductions = d; = d; — 2 {%‘ﬂdi_l‘;

3

End;

T




Number of reduction Levels L

For Modulo 29 — 1:

L(q) = [1-71093\; p=Illogql = q=2Py(1<y<2)=
L) ~[1.7(p—-1+logy)|=[1.7(p— D] < L(q) < [1.7p]

L for Modulo 29 — 3 via the proposed algorithm =~ £L(2q), since
di=2q—-1,dy=2q+1
d0=q,dq_1=q+1,db=d0+dq_1=q+q+1

Doubling g in [1.7(p — 1)| < L(q) < [1.7p]| extends the bounds by at most [1. 7] = 2
— Only 2 extra levels




Schematic comparison of modulo-(29 — 3) multipliers
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Modulo-13 example of Seidel’s design

AXB=29P, +P,q=4
— a3b0 + azbl + albz + a0b3

a, by a, by agby
asb, a, by agby
azb, | azb, apb,
asbs | azbs | a;b;
P, —A

21 A +P, A= |2
The gray shaded parts are not implemented
AX3B =A%, + 235, +2°B, + 2'B, + b,) = 2* X 3P, + 3p,

128 | 64 32 16 8 4 2 1
a;B; | asby | azby | a;by | aphg
By = by + b azB; | @3B, | @3By | 4By | agB;
B, = by + by asB; | a;B; | a4B3 | a4B, | ayB,
B3 = b3 + by | azbs | azb3 | a;1b3 | aphbs | ayBs

3P, —3A+ U




Modulo-13 example of Seidel’s design ...

|A X Blya_3 = |3P, +Pjla-3,q9 = 4
Actual column depth | 5 6 7 8
By = by + by oy | @yby | Goby | a3B
By =b; + by @by | @by | 3B, | B,
B3 = b3 + b, @bz | a3B; | a,B; a,B;
a3b3 a2b3 a1b3 a0b3
3A — L
P
L= a3b0 + azbl ~+ a1b2 —+ a0b3, A: ‘2_(5




Modulo-13 example of Seidel’s design ...

AXB=21P, + P, q=

u = azbg + a;b; + a;b, + agbs
az bg a; by aoby
asb, a; by aghy
azb, | axb, agb,
asbs | azbs | a bs

P =& 21 A +P, A= |2k

The gray shaded parts are not implemented
AX3B = A(2%; 4+ 235, + 2°B, + 2'B, + by) = 2* x 3P, + 3p,

128 | 64 32 16 8 4 2 1
AzB; | asby | azby | a;by | aghy
By = by + by as3B; | a;B, | @B, | a1By | aoB;
By = by + by azB; | a;B; | a1B; | a1B5 | agB,
By =bs +b, | azhy | apb; | ajb; | agh; | ayBs
3P, —3A+0
|A X Blya_s = 3P, +Bilz1-5,9 = 4
Actual column depth | 5 6 7 8
asby | azby | aihy aoby
B, = b + by as by | a;by | aghy asBy
B, = b, + by a.b, | agh; | a3B, a,B,
By = by + b, aghs | a3Bs | a;B4 a, B
asbs | azhbs | a;bs agbs
3A—U




Our in-house software

import math
import array as arr

from termcolor import colored

dot = "\uz@22"
blank = " "

def print_hardware(results):
if len(results) > @:
delimiter = "--" * ipt(1.5 * len(results[ae])})
for i in range(e, len(results}):
for hardware in results[i]:
if hardware == blank:
hardware = " -"
print(hardware, end=" "}
print(})
print({delimiter)

def print_black(values, is_hardware_needed, results):
row = len({values})
col = len(values[e]}
NuUmFA = @
delimiter = "--" * (int{z.5 * col} + 3}
for i in range(e, row):
is_blank = True
for j in range(e, col}):
print(values[i][j], end=" "}
if values[i][j] == dot:
is_blank = False

if is_hardware_needed:
# print hardware needed for reduction
print(" ", end=" ")
if i == @ and len(results}!-e:
temp = [@]*len(results[e])
for result in results:
for x in range(e, len(result)):
if result[x] != blank:
temp[x] += 1
for value in temp:
print(value, end=" "}
numFA = numFA + value
print(})
if is_blank:
break

print({delimiter)

return numFA

def print_celored(values, colors):
row = len(values})

EEE R

Number of
Number of
Number of

F oE ok R OB R R £ F ¥ =

22231

levels with Proposed Algorithm are: 5

FullAdders used for reduction: 180 + 7 + 5 + 4 + 4 =

levels with Wallace and without EAC are:

a

3e

= R X E R E R R E X K R X E R ¥ E R %

223332

122231

. 111211

. 11111%@

111811

eeelie

Number of levels with Proposed Algorithm are: &
Number of Fulladders used for reduction: 15 + 11 + 7 # 5+ 5 + 2 = 45
Number of levels with wallace and without EAC are: 5

EREEEN B NN

F1::3:3%331

113111331321

11311131112

11111311118



Evaluations and Comparisons
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Evaluations and Comparisons ...

Area Delay Power PDP
pm? Ratio ns Ratio || mW | Ratio pj Ratio
q=4
Home j§j| 36314 1 4.34 1 0.73 1 3.19 1
[9] 37449 1.03 6.10 1.41 0.80 1.09 4.89 .53
[10] 39349 1.08 6.41 1.48 0.86 1.17 5.52 1.73
q=28
Home J| 158935 1 5.41 1 4.50 1 24.36 1
[9] 132620 | 0.83 8.92 1.65 3.90 0.87 34.83 1.43
[10] 137372 1 0.86 0.70 1.24 4.11 0.91 27.58 .13
q=16
Home J| 661472 ] 6.32 1 22.80 1 144.11 1
[9] 530077 | 0.80 13.83 | 2.19 18.03 | 0.79 || 249.39 1.73
[10] 545047 ¢ 0.82 8.40 1.33 18.88 | 0.83 158.60 1.10




Evaluations and Comparisons ...

° q=8

Area Delay Power PDP

B Home M [9] [10]




INn short

Fully modular approach in the realization of modulo-(29 — 3) multiplier results in:

v'Less delay
v'Less energy

v"More speed-balance with companion moduli 29 + 1

Ongoing and future relevant research:
» Fully modular modulo-(29 + 3) multiplier

> Study of fully modular approach for generic modulo-(29 — §) multiplier




Greetings from Chosun University




Evaluations and Comparisons
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Evaluations and Comparisons
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Evaluations and Comparisons

7
40 300
6 35
250
30
5
200
25
4
20 150
3
15
100
2
10
1 50
II | I
Area Delay Power PDP Area Delay Power Area Delay Power

HHome H[9] [10]

H Home H[9] [10] B Home M [9 10




Evaluations and Comparisons
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