### Modulo-(2<sup>q</sup> – 3) Multiplication with Fully Modular Partial Product Generation and Reduction

Ghassem Jaberipur<sup>1</sup>, Saeid Gorgin<sup>1</sup>, Navid Ahamadian<sup>2</sup>, Jeong-A Lee<sup>1</sup>

<sup>1</sup>Department of Computer Engineering, Chosun University, Gwangju, Republic of Korea <sup>2</sup>Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

> 30<sup>th</sup> IEEE International Symposium on Computer Arithmetic ARITH 2023



#### Jeong-A Lee Professor, Department of Computer Engineering, Chosun University.

Jeong-A Lee received a B.S. degree (Hons.) in computer engineering from Seoul National University, Seoul, South Korea, in 1982, an M.S. degree in computer science from Indiana University Bloomington, Bloomington, IN, USA, in 1985, and a Ph.D. degree in computer science from the University of California at Los Angeles, Los Angeles, CA, USA, in 1990, From 1990 to 1995, she was an Assistant Professor with the Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA. Since 1995, she has been with Chosun University, Gwangju, South Korea. From 2008 to 2009, she served as a Program Director of the ECE Division, at the National Research Foundation of Korea. Dr. Lee is a member of the National Academy of Engineering in South Korea. She has authored or co-authored more than 100 reviewed journal and conference papers. Her current interests include high-performance computer architectures, memory architecture, approximate computing, self-aware computing, and reliable computing.



#### **Ghassem Jaberipur**

Professor for the Brain Pool Program in Chosun University

Dr. Ghassem Jaberipur, Born in Tehran on the 26th of June 1952, is a graduate of UCLA, UW-Madison, and Sharif University of Technology (SUT). After 43 years of academic life based at Shahid Beheshti University (SBU), he retired on August 23 2022, as a Professor of the Computer Science and Engineering Department, Tehran, Iran. He is currently (as of September, 1st 2022) with the School of IT Convergence Engineering, Chosun University, Gwangju, South Korea, as a Professor for the Brain Pool Program. Besides SBU, he has taught for 4 decades in SUT and Tehran University. In 2016, he received the SUT semi-centennial medal as one of the 50 distinguished SUT graduates for his scientific achievements and services to Iranian society. Dr. Jaberipur's main research is in the field of Computer Arithmetic, for which he received a 2020 international Khwarizmi award.



#### Saeid Gorgin

Associate Professor of Computer Engineering at IROST & Brain Pool Program in Chosun University

SAEID GORGIN received the B.S. degree in computer engineering from Azad University South Tehran Branch, Tehran, Iran, in 2001, the M.S. degree in computer engineering from Azad University Tehran Science and Research Branch, Tehran, in 2004, and the Ph.D. degree in computer system architecture from Shahid Beheshti University, Tehran, in 2010. He is currently an Associate Professor of computer engineering with the Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Tehran. He is also a Visiting Scientist at the Computer Systems Laboratory, Department of Computer Engineering, Chosun University, South Korea. His current research interests include computing systems, Computer Arithmetic, Hardware Accelerators, Machine Learning, and FPGA.

## Outline

- Limited DR of the most popular RNS moduli set  $\tau = \{2^q 1, 2^q, 2^q + 1\}$
- Balanced inter-moduli arithmetic speed
- The challenge of appropriate additional moduli for higher DR
- Existing  $\tau$ -balanced parallel prefix modulo-( $2^q 3$ ) adders
- Modulo- $(2^q 3)$  product via non-modular multiplication (2010 AND 2013)
- Via semi-modular multiplication (2018)
- The challenge of fully modular approach and the solution
- Results: Only 2 extra CSA levels for modulo- $(2^q 3)$  vs. modulo- $(2^q 1)$
- Results: Speedup and energy saving at the cost of more area and power consumption



# Modulo- $(2^q - 1)$ multiplication

| Non-modular + forward conversion |                                        | Fully modular                                    |
|----------------------------------|----------------------------------------|--------------------------------------------------|
| × • • • •                        | Modulo-15<br>residues                  | $\times \bullet \bullet \bullet \bullet$         |
|                                  | ←Non-modular<br>PPM<br>modular<br>PPM→ |                                                  |
|                                  | 1 <sup>st</sup> Reduction              |                                                  |
| • • • • • • • •                  | 2 <sup>nd</sup> reduction              |                                                  |
|                                  | Non-modular product                    | . Just for illustration                          |
|                                  | Forward conversion                     | : Just for illustration<br>Not actually produced |
|                                  | Modular Product                        |                                                  |

## Number of reduction levels $\mathcal{L}(q)$

 $Modulo-(2^{q} - 1): q \times q \text{ MPPM}$   $2 \times \frac{3}{2} = 3; \left[ 3 \times \frac{3}{2} \right] = 4; 4 \times \frac{3}{2} = 6; 6 \times \frac{3}{2} = 9$   $2 \left( \frac{3}{2} \right)^{\mathcal{L}(q)} \approx q \Longrightarrow \mathcal{L}(q) \log \frac{3}{2} \approx \log \frac{q}{2} \Longrightarrow \mathcal{L}(q) \approx \left[ 1.7 \log \frac{q}{2} \right]$ 

$$q = 4 \implies \mathcal{L}(q) = [1.7] = 2(4 \rightarrow 3 \rightarrow 2)$$
$$q = 6 \implies \mathcal{L}(q) = [1.7 \log 3] = 3(6 \rightarrow 4 \dots)$$
$$q = 9 \implies \mathcal{L}(q) = [1.7 \log 4.5] = 4(9 \rightarrow 6 \dots)$$

# Higher dynamic range without speed loss

- $\tau = \{2^q 1, 2^q, 2^q + 1\}:$ >  $2^{3q}$  bit DR
  - $\succ$  + and  $\times: O(log q)$  delay
- Increasing q for higher DR  $\Rightarrow$  Speed loss
- Higher DR with the same q?
- Yes, via augmenting  $\tau$  with  $\{2^q \pm \delta, \text{ for } \delta > 1\}$
- Challenge:  $\tau$ -balanced +,  $\times$  and  $|X|_m$

The challenge of additional moduli of the form  $(2^q \pm \delta)$ 

- $\tau$ -balanced PPA for  $\delta = 3$  exist
- Q1: Mod- $(2^{q} \pm 3) \times$ : As fast as Mod- $(2^{q} \pm 1) \times$ ? NO!
- Q2: Complexity of  $|X|_m$  for  $m = 2^q \pm 3$ ?
- Do Q1 and Q2 share the same problem? Yes!



Q1: 2nd Difference: Deepening of Column 1 by two sources  $|2^{q}c|_{2^{q}-3} = |(2^{q}-3)c + 3c|_{2^{q}-3} = 3c = 2c + c$ 

**Column 1 receives carry bits from:** 

1) Column q - 1 via modular reduction

2) Column 0, via regular reduction:

## Q1: 3rd difference

- **1)** Non-modular product:  $P = A \times B = 2^q P_h + P_l$
- 2) 2*q*-bit *P* to residue conversion:

 $|A \times B|_{2^{q}-3} = |2^{q}P_{h} + P_{l}|_{2^{q}-3} = |3P_{h} + P_{l}|_{2^{q}-3}$ (for previous solutions of 2010 and 2013, while the one of 2018 computes  $\Delta = \left\lfloor \frac{P_{l}}{2^{q}} \right\rfloor$ ) No reason giving for not using fully modular approach as in modulo  $2^{q} - 1$ ?

## Probable reason: Modulo- $(2^q - 3)$ Wallace PPR $\Longrightarrow$ Loop



## Wallace-fail in residue generation $|3P_h + P_l|_{2^q-3}$

### 2010: Not addressed; 2013: Uses Dadda-like; 2018: Not applicable



## Q2: Modulo- $(2^q - 3)$ residue generation

Example moduli set:  $\{2^q, 2^q \pm 1, 2^q \pm 3\}$ 5*q*-bit number X to  $|X|_{2^{q}-3}$  residue:  $X = 2^{4q}X_4 + 2^{3q}X_3 + 2^{2q}X_2 + 2^{q}X_1 + X_0 \Longrightarrow$  $|X|_{2q-3} = |81X_4 + 27X_3 + 9X_2 + 3X_1 + X_0|_{2q-3}$  $= \left[ (2^{6} + 2^{4} + 1)X_{4} + (2^{4} + 2^{3} + 2 + 1)X_{3} + (2^{3} + 1)X_{2} + (2 + 1)X_{1} + X_{0} \right]_{2} q_{-3}$ Modular multi-operand addition with 28 (=12+16) deep Column 1  $\Rightarrow$  2 $q - 1 = 28 \Rightarrow$ As complex as PPR for modulo- $(2^{14} - 3)$  multiplication

## Proposed design: Dadda-like reduction for q = 4





## Proposed design: The general Algorithm

Do while there exists a column with a depth more than 2

- a. Column #0: Apply  $\left\lfloor \frac{d_0}{3} \right\rfloor$  FA reductions  $\Rightarrow d_0 = d_0 2 \left\lfloor \frac{d_0}{3} \right\rfloor + \left\lfloor \frac{d_{q-1}}{3} \right\rfloor$ ;
- b. Column #1: Apply  $\left\lfloor \frac{d_1}{3} \right\rfloor$  FA reductions  $\Rightarrow d_1 = d_1 2 \left\lfloor \frac{d_1}{3} \right\rfloor + \left\lfloor \frac{d_0}{3} \right\rfloor + \left\lfloor \frac{d_{q-1}}{3} \right\rfloor$ ;
- c. Columns  $2 \le i \le q 1$ :

For i = 2 to q - 1 do Apply  $\left\lfloor \frac{d_i}{3} \right\rfloor$  FA reductions  $\Rightarrow d_i = d_i - 2 \left\lfloor \frac{d_i}{3} \right\rfloor + \left\lfloor \frac{d_{i-1}}{3} \right\rfloor$ ;

End;

## Number of reduction Levels $\mathcal{L}$

### For Modulo $2^q - 1$ :

$$\mathcal{L}(q) \approx \left[1.7 \log \frac{q}{2}\right]; \quad p = \lfloor \log q \rfloor \Rightarrow q = 2^p \gamma (1 \le \gamma < 2) \Rightarrow$$
$$\mathcal{L}(q) \approx \left[1.7(p-1) + \log \gamma\right] \Rightarrow \left[1.7(p-1)\right] \le \mathcal{L}(q) \le \left[1.7p\right]$$

 $\mathcal{L}$  for Modulo  $2^q - 3$  via the proposed algorithm  $\approx \mathcal{L}(2q)$ , since  $d_1 = 2q - 1$ ,  $d'_0 = 2q + 1$  $d_0 = q$ ,  $d_{q-1} = q + 1$ ,  $d'_0 = d_0 + d_{q-1} = q + q + 1$ 

Doubling q in  $[1.7(p-1)] \le \mathcal{L}(q) \le [1.7p]$  extends the bounds by at most [1.7] = 2 $\Rightarrow$  Only 2 extra levels

### Schematic comparison of modulo- $(2^q - 3)$ multipliers



## Modulo-13 example of Seidel's design

| $A \times B = 2^q P_h + P_l, q = 4$                                                                          |          |          |          |                   |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------|----------|----------|----------|-------------------|--|--|--|--|--|--|--|
|                                                                                                              |          |          | Ц        |                   |  |  |  |  |  |  |  |
|                                                                                                              |          |          | $a_3b_0$ |                   |  |  |  |  |  |  |  |
|                                                                                                              |          | $a_3b_1$ | $a_2b_1$ | $a_1b_1$ $a_0b_1$ |  |  |  |  |  |  |  |
|                                                                                                              | $a_3b_2$ | $a_2b_2$ | $a_1b_2$ | $a_0b_2$          |  |  |  |  |  |  |  |
| $a_3b_3$                                                                                                     | $a_2b_3$ | $a_1b_3$ | $a_0b_3$ |                   |  |  |  |  |  |  |  |
| $P_h - \Delta \qquad \qquad 2^q \bigtriangleup + P_l, \ \Delta = \left\lfloor \frac{P_l}{2^q} \right\rfloor$ |          |          |          |                   |  |  |  |  |  |  |  |

#### The gray shaded parts are not implemented

| $A \times 3B = A(2^{4}b_{3} + 2^{3}B_{3} + 2^{2}B_{2} + 2^{1}B_{1} + b_{0}) = 2^{4} \times 3P_{h} + 3p_{l}$ |                                    |          |          |          |          |          |          |          |
|-------------------------------------------------------------------------------------------------------------|------------------------------------|----------|----------|----------|----------|----------|----------|----------|
|                                                                                                             | 128                                | 64       | 32       | 16       | 8        | 4        | 2        | 1        |
|                                                                                                             |                                    |          |          | $a_3B_1$ | $a_3b_0$ | $a_2b_0$ | $a_1b_0$ | $a_0b_0$ |
| $B_1 = b_1 + b_0$                                                                                           |                                    |          | $a_3B_2$ | $a_2B_2$ | $a_2B_1$ | $a_1B_1$ | $a_0B_1$ |          |
| $B_2 = b_2 + b_1$                                                                                           |                                    | $a_3B_3$ | $a_2B_3$ | $a_1B_3$ | $a_1B_2$ | $a_0B_2$ |          |          |
| $B_3 = b_3 + b_2$                                                                                           | $a_3b_3$                           | $a_2b_3$ | $a_1b_3$ | $a_0b_3$ | $a_0B_3$ |          |          |          |
|                                                                                                             | $3P_h - 3 \bigtriangleup + \sqcup$ |          |          |          |          |          |          |          |

## Modulo-13 example of Seidel's design ...

| $ A \times B _{2^{q}-3} =  3P_{h} + \mathbf{P_{l}} _{2^{q}-3}, q = 4$                               |                               |                               |                               |                               |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|--|--|--|--|
| Actual column depth                                                                                 | ctual column depth 5 6 7 8    |                               |                               |                               |  |  |  |  |  |
|                                                                                                     | $a_3b_0$                      | $a_2b_0$                      | $a_1b_0$                      | $a_0b_0$                      |  |  |  |  |  |
| $B_1 = b_1 + b_0$                                                                                   | $a_2b_1$                      | $a_1b_1$                      | $a_0b_1$                      | $a_3B_1$                      |  |  |  |  |  |
| $B_2 = b_2 + b_1$                                                                                   | $a_1b_2$                      | $a_0b_2$                      | a <sub>3</sub> B <sub>2</sub> | a <sub>2</sub> B <sub>2</sub> |  |  |  |  |  |
| $B_3 = b_3 + b_2$                                                                                   | $a_0b_3$                      | a <sub>3</sub> B <sub>3</sub> | a <sub>2</sub> B <sub>3</sub> | $a_1B_3$                      |  |  |  |  |  |
|                                                                                                     | a <sub>3</sub> b <sub>3</sub> | a <sub>2</sub> b <sub>3</sub> | a <sub>1</sub> b <sub>3</sub> | a <sub>0</sub> b <sub>3</sub> |  |  |  |  |  |
| <u>3 △ − ⊔</u>                                                                                      |                               |                               |                               |                               |  |  |  |  |  |
| $\Box = a_3 b_0 + a_2 b_1 + a_1 b_2 + a_0 b_3, \Delta = \left\lfloor \frac{P_l}{2^q} \right\rfloor$ |                               |                               |                               |                               |  |  |  |  |  |

## Modulo-13 example of Seidel's design ...

|                 |                |                   | $A \times$   | $B = 2^q$      | $P_h + P_l, q$       | q = 4               |                    |           |        |
|-----------------|----------------|-------------------|--------------|----------------|----------------------|---------------------|--------------------|-----------|--------|
|                 |                |                   |              | L              |                      |                     | $+ a_1 b_2 +$      | $-a_0b_3$ |        |
|                 |                |                   |              | $a_3b_0$       | $a_2b_0$             | $a_1 b$             | ν <sub>0</sub> α   | $a_0 b_0$ |        |
|                 |                |                   | $a_3b_1$     | $a_2b_1$       | $a_1b_1$             | $a_0k$              | $\mathcal{P}_1$    |           |        |
|                 |                | $a_{3}b_{2}$      | $a_2b_2$     | $a_1b_2$       | $a_0b_2$             |                     |                    |           |        |
|                 | $a_{3}b_{3}$   | $a_2b_3$          | $a_1b_3$     | $a_0b_3$       |                      |                     |                    |           |        |
|                 |                | $P_h - \triangle$ |              |                | $2^q \bigtriangleup$ | $+P_l, \triangle =$ | $=\frac{P_l}{2^q}$ |           |        |
|                 |                | The g             | ray sha      | ded par        | ts are not           | t impler            | nented             |           |        |
| $A \times$      | 3B = A         | $A(2^{4}b_{3})$   | $+ 2^{3}B$   | $_{3} + 2^{2}$ | $B_2 + 2^1 B$        | $(1 + b_0)$         | $= 2^4 \times$     | $3P_h +$  | $3p_l$ |
|                 |                | 128               | 64           | 32             | 16                   | 8                   | 4                  | 2         | 1      |
|                 |                |                   |              |                | $a_3B_1$             | $a_3b_0$            | $a_2b_0$           | $a_1b_0$  | $a_0b$ |
| $B_1 = b_2$     | $1 + b_0$      |                   |              | $a_3B_2$       | $a_2B_2$             | $a_2B_1$            | $a_1B_1$           | $a_0B_1$  |        |
| $B_2 = b_2$     | $_{2} + b_{1}$ |                   | $a_3B_3$     | $a_2B_3$       | $a_1B_3$             | $a_1B_2$            | $a_0B_2$           |           |        |
| $B_{3} = b_{3}$ | $_{3} + b_{2}$ | $a_3b_3$          | $a_2b_3$     | $a_1b_3$       | $a_0b_3$             | $a_0B_3$            |                    |           |        |
|                 |                |                   | $3P_{h} - 3$ | 3 △ + L        | J                    |                     |                    |           |        |

| $ A \times B _{2^{q}-3} =  3P_{h} + \mathbf{P}_{l} _{2^{q}-3}, q = 4$ |          |          |          |          |  |  |  |  |
|-----------------------------------------------------------------------|----------|----------|----------|----------|--|--|--|--|
| Actual column depth 5 6 7 8                                           |          |          |          |          |  |  |  |  |
|                                                                       | $a_3b_0$ | $a_2b_0$ | $a_1b_0$ | $a_0b_0$ |  |  |  |  |
| $B_1 = b_1 + b_0$                                                     | $a_2b_1$ | $a_1b_1$ | $a_0b_1$ | $a_3B_1$ |  |  |  |  |
| $B_2 = b_2 + b_1$                                                     | $a_1b_2$ | $a_0b_2$ | $a_3B_2$ | $a_2B_2$ |  |  |  |  |
| $B_3 = b_3 + b_2$                                                     | $a_0b_3$ | $a_3B_3$ | $a_2B_3$ | $a_1B_3$ |  |  |  |  |
|                                                                       | $a_3b_3$ | $a_2b_3$ | $a_1b_3$ | $a_0b_3$ |  |  |  |  |
|                                                                       |          |          |          | 3 △ − ⊔  |  |  |  |  |

## Our in-house software

| mport math                                                     | Enter n:                                                         | Enter n:<br>6                                                                                                                 | enter n:  |
|----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|
| mport array as arr                                             | 5 * * * * * * * * * * * * * * * *                                | 0<br>* * * * * * * * * * * * * * * * * * *                                                                                    | 10        |
| rom termcolor import colored                                   | ••••• 22231                                                      |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
| bt = "\u2022"                                                  |                                                                  |                                                                                                                               |           |
| ank = " "                                                      |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
| Constant have been the set of the base                         |                                                                  |                                                                                                                               |           |
| <pre>f print_hardware(results):</pre>                          |                                                                  | • • • •                                                                                                                       |           |
| if len(results) > 0:                                           |                                                                  | • • •                                                                                                                         |           |
| <pre>delimiter = "" * int(1.5 * len(results[0]))</pre>         |                                                                  | ••                                                                                                                            |           |
| <pre>for i in range(0, len(results)):</pre>                    | ••••• 11221                                                      | •                                                                                                                             |           |
| for hardware in results[i]:                                    |                                                                  |                                                                                                                               |           |
| if hardware == blank:                                          |                                                                  | • • • • • • 1 2 2 2 3 1                                                                                                       |           |
| hardware = " -"                                                |                                                                  | • • • • • •                                                                                                                   |           |
| print(hardware, end=" ")                                       |                                                                  | • • • • • •                                                                                                                   |           |
| print()                                                        |                                                                  | • • • • • •                                                                                                                   |           |
| print(delimiter)                                               |                                                                  | • • • • •                                                                                                                     |           |
|                                                                |                                                                  | • • • •                                                                                                                       |           |
|                                                                |                                                                  | • ••                                                                                                                          |           |
| <pre>F print_black(values, is_hardware_needed, results):</pre> | ••••• 11111                                                      | •                                                                                                                             |           |
| row = len(values)                                              |                                                                  | •                                                                                                                             |           |
|                                                                |                                                                  |                                                                                                                               |           |
| <pre>col = len(values[0])</pre>                                |                                                                  |                                                                                                                               |           |
| numFA = 0                                                      | • •                                                              | •••••• 111211                                                                                                                 |           |
| delimiter = "" * (int(2.5 * col) + 3)                          |                                                                  | • • • • • •                                                                                                                   |           |
| for i in range(0, row):                                        |                                                                  | • • • • • •                                                                                                                   |           |
| is_blank = True                                                | ••••• 01111                                                      | • • • • •                                                                                                                     |           |
| <pre>for j in range(0, col):</pre>                             |                                                                  | •• ••                                                                                                                         |           |
| <pre>print(values[i][j], end=" ")</pre>                        |                                                                  | •                                                                                                                             |           |
| if values[i][j] == dot:                                        |                                                                  |                                                                                                                               |           |
| is blank = False                                               |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  | •••••• 111110                                                                                                                 |           |
| if is hardware needed:                                         | • • • • • 1 1 1 1 0                                              | •••••                                                                                                                         |           |
| # print hardware needed for reduction                          | • • • •                                                          | • • • • •                                                                                                                     |           |
|                                                                |                                                                  | ••• •                                                                                                                         |           |
| print(" ", end=" ")                                            |                                                                  | •                                                                                                                             |           |
| <pre>if i == 0 and len(results)!=0:</pre>                      |                                                                  |                                                                                                                               |           |
| <pre>temp = [0]*len(results[0])</pre>                          |                                                                  |                                                                                                                               | 122233232 |
| for result in results:                                         |                                                                  | ••••• 111011                                                                                                                  |           |
| <pre>for x in range(0, len(result)):</pre>                     |                                                                  | •••••                                                                                                                         |           |
| <pre>if result[x] != blank:</pre>                              |                                                                  | ••• ••                                                                                                                        |           |
| temp[x] += 1                                                   | Number of levels with Proposed Algorithm are: 5                  | •                                                                                                                             |           |
| for value in temp:                                             | Number of FullAdders used for reduction: 10 + 7 + 5 + 4 + 4 = 30 |                                                                                                                               |           |
| print(value, end=" ")                                          | Number of levels with Wallace and without EAC are: 4             |                                                                                                                               |           |
| numFA = numFA + value                                          |                                                                  |                                                                                                                               |           |
| print()                                                        |                                                                  | •• •••                                                                                                                        |           |
| if is_blank:                                                   |                                                                  | ••                                                                                                                            |           |
| break                                                          |                                                                  | •                                                                                                                             | •         |
| DICON                                                          |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
| print(delimiter)                                               |                                                                  |                                                                                                                               |           |
| return numFA                                                   |                                                                  | •••••                                                                                                                         |           |
|                                                                |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  | Number of levels with Proposed Algorithm are: 6                                                                               |           |
| <pre>print_colored(values, colors):</pre>                      |                                                                  | Number of FullAdders used for reduction: 15 + 11 + 7 + 5 + 5 + 2 = 45                                                         |           |
| row = len(values)                                              |                                                                  | Number of FullAdders used for reduction: 15 + 11 + 7 + 5 + 5 + 2 = 45<br>Number of levels with Wallace and without EAC are: 5 |           |
| col - len(values[0])                                           |                                                                  | NUMBER OF TEVETS WITH WAITURE AND WITHOUT EAC 916: 2                                                                          |           |
|                                                                |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |
|                                                                |                                                                  |                                                                                                                               |           |

....



|      | Are       | Area  |       | lay        | Pov   | wer   | PD     | P     |
|------|-----------|-------|-------|------------|-------|-------|--------|-------|
|      | $\mu m^2$ | Ratio | ns    | Ratio      | mW    | Ratio | pj     | Ratio |
|      | q = 4     |       |       |            |       |       |        |       |
| Home | 36314     | 1     | 4.34  | 1          | 0.73  | 1     | 3.19   | 1     |
| [9]  | 37449     | 1.03  | 6.10  | 1.41       | 0.80  | 1.09  | 4.89   | 1.53  |
| [10] | 39349     | 1.08  | 6.41  | 1.48       | 0.86  | 1.17  | 5.52   | 1.73  |
|      |           |       |       | <i>q</i> = | = 8   |       |        |       |
| Home | 158935    | 1     | 5.41  | 1          | 4.50  | 1     | 24.36  | 1     |
| [9]  | 132620    | 0.83  | 8.92  | 1.65       | 3.90  | 0.87  | 34.83  | 1.43  |
| [10] | 137372    | 0.86  | 6.70  | 1.24       | 4.11  | 0.91  | 27.58  | 1.13  |
|      |           |       |       | q =        | 16    |       |        |       |
| Home | 661472    | 1     | 6.32  | 1          | 22.80 | 1     | 144.11 | 1     |
| [9]  | 530077    | 0.80  | 13.83 | 2.19       | 18.03 | 0.79  | 249.39 | 1.73  |
| [10] | 545047    | 0.82  | 8.40  | 1.33       | 18.88 | 0.83  | 158.60 | 1.10  |



## **In short**

Fully modular approach in the realization of modulo- $(2^q - 3)$  multiplier results in:

- ✓ Less delay
- ✓ Less energy

✓ More speed-balance with companion moduli  $2^q \pm 1$ 

**Ongoing and future relevant research:** 

> Fully modular modulo- $(2^q + 3)$  multiplier

> Study of fully modular approach for generic modulo-( $2^q - \delta$ ) multiplier

## **Greetings from Chosun University**









