

Slimmer Formal Proofs for Mathematical Libraries

Paul Geneau de Lamarlière^{1, 2}, Guillaume Melquiond², Florian Faissole¹

ARITH 2023, September 4th

¹MITSUBISHI ELECTRIC R&D CENTRE EUROPE ²UNIVERSITE PARIS-SACLAY, CNRS, ENS PARIS-SACLAY, INRIA, LMF

MFR2023-ARC-0439

Much work is done on finding floating-point approximations of real functions:

- Libraries of functions for single (32-bit) and double (64-bit) precision: CORE-MATH, CRLibm, etc.
- Automated generation of such functions: MetaLibm
- \rightarrow We want these functions to be accurate enough.
- Proof with pen and paper is too long and subject to error: need for formal proofs. But formal proof by hand is still cumbersome.

Much work is done on finding floating-point approximations of real functions:

- Libraries of functions for single (32-bit) and double (64-bit) precision: CORE-MATH, CRLibm, etc.
- Automated generation of such functions: MetaLibm
- \rightarrow We want these functions to be accurate enough.

Proof with pen and paper is too long and subject to error: need for formal proofs. But formal proof by hand is still cumbersome.

def cw exp(x): if x < -746: return 0 **else if** 710 < x: return $+\infty$ else: $k \leftarrow \text{nearbyint}(x \times C)$ Reduction: $C \simeq 1/\ln 2$ and $c_1 + c_2 \simeq \ln 2$ $t \leftarrow x - k \times c_1 - k \times c_2$ $t_2 \leftarrow t \times t$ $\left. \begin{array}{l} p \quad \leftarrow \quad p_0 + t_2 \times (p_1 + t_2 \times p_2) \\ q \quad \leftarrow \quad q_0 + t_2 \times (q_1 + t_2 \times q_2) \\ f \quad \leftarrow \quad (t \times p)/(q - t \times p) + 1/2 \end{array} \right\} \text{Approximation}$ return $f \times 2^{k+1}$

 \rightarrow Crucial details of correctness proof:

• *t* is close enough to $x - k \ln 2$: $x - k \times c_1$ is performed exactly

- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

def cw exp(x): if x < -746: return 0 **else if** 710 < x: return $+\infty$ else: $k \leftarrow \text{nearbyint}(x \times C)$ $t \leftarrow x - k \times c_1 - k \times c_2$ Reduction: $C \simeq 1/\ln 2$ and $c_1 + c_2 \simeq \ln 2$ $t_2 \leftarrow t \times t$ $\left. \begin{array}{ll} p & \leftarrow & p_0 + t_2 \times (p_1 + t_2 \times p_2) \\ q & \leftarrow & q_0 + t_2 \times (q_1 + t_2 \times q_2) \\ f & \leftarrow & (t \times p)/(q - t \times p) + 1/2 \end{array} \right\} \text{Approximation}$ return $f \times 2^{k+1}$

 \rightarrow Crucial details of correctness proof:

• t is close enough to $x - k \ln 2$: $x - k \times c_1$ is performed exactly

- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

def cw exp(x): if x < -746: return 0 **else if** 710 < x: return $+\infty$ else: $k \leftarrow \text{nearbyint}(x \times C)$ $t \leftarrow x - k \times c_1 - k \times c_2$ Reduction: $C \simeq 1/\ln 2$ and $c_1 + c_2 \simeq \ln 2$ $t_2 \leftarrow t \times t$ $\left. \begin{array}{ll} p & \leftarrow & p_0 + t_2 \times (p_1 + t_2 \times p_2) \\ q & \leftarrow & q_0 + t_2 \times (q_1 + t_2 \times q_2) \\ f & \leftarrow & (t \times p)/(q - t \times p) + 1/2 \end{array} \right\} \text{Approximation}$ return $f \times 2^{k+1}$

 \rightarrow Crucial details of correctness proof:

- t is close enough to $x k \ln 2$: $x k \times c_1$ is performed exactly
- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

def cw exp(x): if x < -746: return 0 **else if** 710 < x: return $+\infty$ else: $k \leftarrow \text{nearbyint}(x \times C)$ $t \leftarrow x - k \times c_1 - k \times c_2$ Reduction: $C \simeq 1/\ln 2$ and $c_1 + c_2 \simeq \ln 2$ $t_2 \leftarrow t \times t$ $\begin{array}{cccc} p & \leftarrow & p_0 + t_2 \times (p_1 + t_2 \times p_2) \\ q & \leftarrow & q_0 + t_2 \times (q_1 + t_2 \times q_2) \\ f & \leftarrow & (t \times p)/(q - t \times p) + 1/2 \end{array} \right\} \text{Approximation}$ return $f \times 2^{k+1}$

 \rightarrow Crucial details of correctness proof:

- t is close enough to $x k \ln 2$: $x k \times c_1$ is performed exactly
- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

CORE-MATH logarithm:

```
static void cr_log_fast (double *h, double *l, int e, d64u64 v)
 uint64_t m = 0x1000000000000 + (v.u & 0xfffffffffffff);
 /* x = m/2^{52} */
 /* if x > sqrt(2), we divide it by 2 to avoid cancellation */
 int c = m >= 0x16a09e667f3bcd:
 e += c; /* now -1074 <= e <= 1024 */
  static const double cv[] = \{1, 0, 0, 5\}:
  static const uint64_t cm[] = {43, 44};
 int i = m >> cm[c];
 double y = v.f * cy[c];
 double r = (_INVERSE - OFFSET)[i];
 double z = __builtin_fma (r, y, -1.0); /* exact */
 /* evaluate P(z), for |z| < 0.00212097167968735 */
 double z^2 = z * z:
 double p45 = __builtin_fma (P[5], z, P[4]);
 double p23 = __builtin_fma (P[3], z, P[2]);
. . .
```


- $\llbracket e \rrbracket_{\text{flt}} = (\mathbf{x} -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_1}) -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_2}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{rnd} = \circ(\circ(x \circ(kc_1)) \circ(kc_2))$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{exa} = x kc_1 kc_2$ (infinite-precision real numbers: useful for formal proofs)

- $\llbracket e \rrbracket_{\mathsf{flt}} = (\mathbf{x} -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_1}) -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_2}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{rnd} = \circ(\circ(x \circ(kc_1)) \circ(kc_2))$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{exa} = x kc_1 kc_2$ (infinite-precision real numbers: useful for formal proofs)

- $\llbracket e \rrbracket_{\mathsf{flt}} = (\mathbf{x} -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_1}) -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_2}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{rnd} = \circ(\circ(x \circ(kc_1)) \circ(kc_2))$ (rounded real numbers: what we would like to reason about)
- $[e]_{exa} = x kc_1 kc_2$ (infinite-precision real numbers: useful for formal proofs)

- $\llbracket e \rrbracket_{\mathsf{flt}} = (\mathbf{x} -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_1}) -_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c_2}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{rnd} = \circ(\circ(x \circ(kc_1)) \circ(kc_2))$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{exa} = x kc_1 kc_2$ (infinite-precision real numbers: useful for formal proofs)

 $[\![e]\!]_{\mathsf{flt}}$ is finite and $|[\![e]\!]_{\mathsf{flt}}/E-1| \leq \varepsilon$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{\text{fit}} = \llbracket e \rrbracket_{\text{rnd}}$, in which case it is sufficient to prove $|\llbracket e \rrbracket_{\text{rnd}}/E 1| \le \varepsilon$
- $\bullet \ |\llbracket e \rrbracket_{\mathsf{rnd}} / E 1| \leq \varepsilon \text{ is typically broken into } |\llbracket e \rrbracket_{\mathsf{rnd}} / \llbracket e \rrbracket_{\mathsf{exa}} 1| \leq \varepsilon_1 \text{ and } |\llbracket e \rrbracket_{\mathsf{exa}} / E 1| \leq \varepsilon_2$

 \rightarrow Goal: Making this process less cumbersome for the user.

 $\llbracket e \rrbracket_{\mathsf{flt}}$ is finite and $|\llbracket e \rrbracket_{\mathsf{flt}}/E - 1| \leq \varepsilon$

• If e meets certain conditions, we have $\llbracket e \rrbracket_{\mathsf{flt}} = \llbracket e \rrbracket_{\mathsf{rnd}}$, in which case it is sufficient to prove $|\llbracket e \rrbracket_{\mathsf{rnd}}/E - 1| \leq \varepsilon$

 $\bullet \ |\llbracket e \rrbracket_{\mathsf{rnd}} / E - 1| \leq \varepsilon \text{ is typically broken into } |\llbracket e \rrbracket_{\mathsf{rnd}} / \llbracket e \rrbracket_{\mathsf{exa}} - 1| \leq \varepsilon_1 \text{ and } |\llbracket e \rrbracket_{\mathsf{exa}} / E - 1| \leq \varepsilon_2$

 \rightarrow Goal: Making this process less cumbersome for the user.

 $\llbracket e \rrbracket_{\mathsf{flt}}$ is finite and $|\llbracket e \rrbracket_{\mathsf{flt}}/E - 1| \leq \varepsilon$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{flt} = \llbracket e \rrbracket_{rnd}$, in which case it is sufficient to prove $|\llbracket e \rrbracket_{rnd}/E 1| \le \varepsilon$
- $\bullet \ |\llbracket e \rrbracket_{\mathsf{rnd}} / E 1| \leq \varepsilon \text{ is typically broken into } |\llbracket e \rrbracket_{\mathsf{rnd}} / \llbracket e \rrbracket_{\mathsf{exa}} 1| \leq \varepsilon_1 \text{ and } |\llbracket e \rrbracket_{\mathsf{exa}} / E 1| \leq \varepsilon_2$

 \rightarrow Goal: Making this process less cumbersome for the user.

 $\llbracket e \rrbracket_{\mathsf{flt}}$ is finite and $|\llbracket e \rrbracket_{\mathsf{flt}}/E - 1| \leq \varepsilon$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{flt} = \llbracket e \rrbracket_{rnd}$, in which case it is sufficient to prove $|\llbracket e \rrbracket_{rnd}/E 1| \le \varepsilon$
- $\bullet \ |\llbracket e \rrbracket_{\mathsf{rnd}} / E 1| \leq \varepsilon \text{ is typically broken into } |\llbracket e \rrbracket_{\mathsf{rnd}} / \llbracket e \rrbracket_{\mathsf{exa}} 1| \leq \varepsilon_1 \text{ and } |\llbracket e \rrbracket_{\mathsf{exa}} / E 1| \leq \varepsilon_2$
- \rightarrow Goal: Making this process less cumbersome for the user.

Contribution

- Abstract expressions:
 - Language and interpretations
 - Specification (relates $[\![.]\!]_{\sf flt}$ and $[\![.]\!]_{\sf rnd}$)
- Tools for the Coq proof assistant

Expressions and interpretations

Language of expressions

Let k = NearbyInt (Op MUL (Var x) InvLog2) Let t = Op SUB (OpExact SUB (Var x) (OpExact MUL (Var k) Log2h)) $\longleftrightarrow \begin{array}{c} k \leftarrow \text{nearbyint}(x \times C) \\ t \leftarrow x - k \times c_1 - k \times c_2 \\ t \leftarrow x - k \times c_1 - k \times c_2 \end{array}$

\rightarrow Supported operations: +, –, ×, /, \swarrow , [.], FMA, etc.

 \rightarrow Exact results:

•
$$\llbracket u +_{\text{exact}} v \rrbracket_{\text{flt}} = \llbracket u \rrbracket_{\text{flt}} +_{\mathbb{F}} \llbracket v \rrbracket_{\text{flt}} = \llbracket u + v \rrbracket_{\text{flt}}$$

• $\llbracket u +_{\text{exact}} v \rrbracket_{\text{rnd}} = \llbracket u \rrbracket_{\text{rnd}} + \llbracket v \rrbracket_{\text{rnd}} \neq \llbracket u + v \rrbracket_{\text{rnd}}$

Language of expressions

Let k = NearbyInt (Op MUL (Var x) InvLog2) Let t = Op SUB (OpExact SUB (Var x) (OpExact MUL (Var k) Log2h)) $\longleftrightarrow k \leftarrow \text{nearbyint}(x \times C)$ (Op MUL (Var k) Log21) $t \leftarrow x - k \times c_1 - k \times c_2$

 \rightarrow Supported operations: +, –, ×, /, \swarrow , [.], FMA, etc.

 \rightarrow Exact results:

•
$$\llbracket u +_{\mathsf{exact}} v \rrbracket_{\mathsf{flt}} = \llbracket u \rrbracket_{\mathsf{flt}} +_{\mathbb{F}} \llbracket v \rrbracket_{\mathsf{flt}} = \llbracket u + v \rrbracket_{\mathsf{flt}}$$

•
$$\llbracket u +_{\mathsf{exact}} v \rrbracket_{\mathsf{rnd}} = \llbracket u \rrbracket_{\mathsf{rnd}} + \llbracket v \rrbracket_{\mathsf{rnd}} \neq \llbracket u + v \rrbracket_{\mathsf{rnd}}$$

First we want to prove $\llbracket e \rrbracket_{flt}$ is finite and represents $\llbracket e \rrbracket_{rnd}$.

We define (by induction) a predicate ${\rm WB}$ on expressions such that if ${\rm WB}(e)$ holds then e is well-behaved.

• WB(u/v)
$$\triangleq \begin{cases} WB(u) \land WB(v) \\ \land & |\llbracket v \rrbracket_{rnd} | \neq 0 \\ \land & |\circ(\llbracket u \rrbracket_{rnd} / \llbracket v \rrbracket_{rnd})| \leq \Omega \end{cases}$$
 (no division by 0)
(no overflow)
• WB(u +_{exact} v)
$$\triangleq \begin{cases} WB(u) \land WB(v) \\ \land & \circ(\llbracket u \rrbracket_{rnd} + \llbracket v \rrbracket_{rnd}) = \llbracket u \rrbracket_{rnd} + \llbracket v \rrbracket_{rnd} \end{cases}$$
 (produces exact result)
(no overflow)

Correspondence theorem

 $\mathrm{WB}(e) \Rightarrow \llbracket e \rrbracket_{\mathsf{flt}} \text{ finite } \land \llbracket e \rrbracket_{\mathsf{flt}} = \llbracket e \rrbracket_{\mathsf{rnd}}$

Tools for the Coq proof assistant

Tools for the Coq proof assistant

- Process a goal about $\llbracket e \rrbracket_{\mathsf{flt}}$ and apply correspondence theorem to obtain a goal about $\llbracket e \rrbracket_{\mathsf{rnd}}$, yields a $\operatorname{WB}(e)$ goal not ideal to prove by hand
- Try to prove automatically all conjuncts of WB(*e*)
- Facilitate asserting a property on a subexpression (c.f. Cody & Waite)

Automating proof of WB(e)

- Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval). CoqInterval can perform finer interval arithmetic using Taylor models. Gappa supports roundings and makes use of floating-point theorems.
 - $\bullet \ |\circ(u+v)| \leqslant \Omega$ can be proven using naı̈ve interval arithmetic
 - $v \neq 0$ can be proven using interval arithmetic with Taylor models
 - $\circ(x+y) = x + y$ generally cannot be proven using just interval arithmetic
- \rightarrow Added support for roundings in CoqInterval's naïve and Taylor-based provers.

Automating proof of WB(e)

Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval). CoqInterval can perform finer interval arithmetic using Taylor models. Gappa supports roundings and makes use of floating-point theorems.

- $\bullet \ |\circ(u+v)| \leqslant \Omega$ can be proven using naı̈ve interval arithmetic
- $v \neq 0$ can be proven using interval arithmetic with Taylor models
- $\circ(x+y) = x+y$ generally cannot be proven using just interval arithmetic

 \rightarrow Added support for roundings in CoqInterval's naı̈ve and Taylor-based provers.

Automating proof of WB(e)

Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval). CoqInterval can perform finer interval arithmetic using Taylor models. Gappa supports roundings and makes use of floating-point theorems.

- $\bullet \ |\circ(u+v)| \leqslant \Omega$ can be proven using naı̈ve interval arithmetic
- $v \neq 0$ can be proven using interval arithmetic with Taylor models
- $\circ(x+y) = x+y$ generally cannot be proven using just interval arithmetic

 \rightarrow Added support for roundings in CoqInterval's naı̈ve and Taylor-based provers.

Conclusion

©Mitsubishi Electric R&D Centre Europe Export Control: NLR

| 14 / 16

We built a Coq tool for facilitating proofs about floating-point approximations. Available in CoqInterval: https://coqinterval.gitlabpages.inria.fr/

Correctness of the polynomial approximation of CORE-MATH 64-bit logarithm:

 $-0.00203 \leqslant z \leqslant 0.00212 \to [P(z)]_{\text{flt}} \text{ finite } \wedge |[P(z)]_{\text{flt}} - (\ln(1+z) - z)| \le 2^{-68.72}$

 \Rightarrow Proved in 7 lines of Coq.

Tested examples are available here: https://gitlab.inria.fr/pgeneaud/examples The CORE-MATH project: https://core-math.gitlabpages.inria.fr/

We built a Coq tool for facilitating proofs about floating-point approximations. Available in CoqInterval: https://coqinterval.gitlabpages.inria.fr/

Correctness of the polynomial approximation of CORE-MATH 64-bit logarithm:

 $-0.00203 \leqslant z \leqslant 0.00212 \rightarrow [\![P(z)]\!]_{\rm flt} \text{ finite } \wedge |[\![P(z)]\!]_{\rm flt} - (\ln(1+z)-z)| \le 2^{-68.72}$

 \Rightarrow Proved in 7 lines of Coq.

Tested examples are available here: https://gitlab.inria.fr/pgeneaud/examples The CORE-MATH project: https://core-math.gitlabpages.inria.fr/

- \rightarrow Full correctness of the CORE-MATH logarithm: macro-operations (FastTwoSum), tables of constants, support for control flow (language of instructions)
- ightarrow Support for higher-level procedures (argument reduction, polynomial/rational approximation, etc.)
- \rightarrow Working directly with C programs (translation from C to the language of expressions, and back)

LMF: https://lmf.cnrs.fr