
Slimmer Formal Proofsfor Mathematical Libraries
Paul Geneau de Lamarlière1, 2, Guillaume Melquiond2, Florian Faissole1

ARITH 2023, September 4th

MFR2023-ARC-0439

Mathematical Libraries and Formal Proofs

Much work is done on finding floating-point approximations of real functions:

Libraries of functions for single (32-bit) and double (64-bit) precision: CORE-MATH, CRLibm,
etc.
Automated generation of such functions: MetaLibm

→We want these functions to be accurate enough.

Proof with pen and paper is too long and subject to error: need for formal proofs.
But formal proof by hand is still cumbersome.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 1 / 16

Mathematical Libraries and Formal Proofs

Much work is done on finding floating-point approximations of real functions:

Libraries of functions for single (32-bit) and double (64-bit) precision: CORE-MATH, CRLibm,
etc.
Automated generation of such functions: MetaLibm

→We want these functions to be accurate enough.

Proof with pen and paper is too long and subject to error: need for formal proofs.
But formal proof by hand is still cumbersome.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 1 / 16

Correctness of floating-point algorithms
def cw_exp(x):if x < −746:return 0else if 710 < x:return +∞else:

k ← nearbyint(x× C)
t ← x− k × c1 − k × c2

}
Reduction: C ≃ 1/ ln 2 and c1 + c2 ≃ ln 2

t2 ← t× t
p ← p0 + t2 × (p1 + t2 × p2)
q ← q0 + t2 × (q1 + t2 × q2)
f ← (t× p)/(q − t× p) + 1/2

Approximation

return f × 2k+1

→ Crucial details of correctness proof:
t is close enough to x− k ln 2: x− k × c1 is performed exactly
No exceptional behaviour occurs in the approximation part
The latter is a good enough approximation

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 2 / 16

Correctness of floating-point algorithms
def cw_exp(x):if x < −746:return 0else if 710 < x:return +∞else:

k ← nearbyint(x× C)
t ← x− k × c1 − k × c2

}
Reduction: C ≃ 1/ ln 2 and c1 + c2 ≃ ln 2

t2 ← t× t
p ← p0 + t2 × (p1 + t2 × p2)
q ← q0 + t2 × (q1 + t2 × q2)
f ← (t× p)/(q − t× p) + 1/2

Approximation

return f × 2k+1

→ Crucial details of correctness proof:
t is close enough to x− k ln 2: x− k × c1 is performed exactly
No exceptional behaviour occurs in the approximation part
The latter is a good enough approximation

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 2 / 16

Correctness of floating-point algorithms
def cw_exp(x):if x < −746:return 0else if 710 < x:return +∞else:

k ← nearbyint(x× C)
t ← x− k × c1 − k × c2

}
Reduction: C ≃ 1/ ln 2 and c1 + c2 ≃ ln 2

t2 ← t× t
p ← p0 + t2 × (p1 + t2 × p2)
q ← q0 + t2 × (q1 + t2 × q2)
f ← (t× p)/(q − t× p) + 1/2

Approximation

return f × 2k+1

→ Crucial details of correctness proof:
t is close enough to x− k ln 2: x− k × c1 is performed exactly
No exceptional behaviour occurs in the approximation part
The latter is a good enough approximation

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 2 / 16

Correctness of floating-point algorithms
def cw_exp(x):if x < −746:return 0else if 710 < x:return +∞else:

k ← nearbyint(x× C)
t ← x− k × c1 − k × c2

}
Reduction: C ≃ 1/ ln 2 and c1 + c2 ≃ ln 2

t2 ← t× t
p ← p0 + t2 × (p1 + t2 × p2)
q ← q0 + t2 × (q1 + t2 × q2)
f ← (t× p)/(q − t× p) + 1/2

Approximation

return f × 2k+1

→ Crucial details of correctness proof:
t is close enough to x− k ln 2: x− k × c1 is performed exactly
No exceptional behaviour occurs in the approximation part
The latter is a good enough approximation

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 2 / 16

CORE-MATH logarithm:
static void cr_log_fast (double *h, double *l, int e, d64u64 v)

{

uint64_t m = 0x10000000000000 + (v.u & 0xfffffffffffff);

/* x = m/2^52 */

/* if x > sqrt (2), we divide it by 2 to avoid cancellation */

int c = m >= 0x16a09e667f3bcd;

e += c; /* now -1074 <= e <= 1024 */

static const double cy[] = {1.0, 0.5};

static const uint64_t cm[] = {43, 44};

int i = m >> cm[c];

double y = v.f * cy[c];

double r = (_INVERSE - OFFSET)[i];

double z = __builtin_fma (r, y, -1.0); /* exact */

/* evaluate P(z), for |z| < 0.00212097167968735 */

double z2 = z * z;

double p45 = __builtin_fma (P[5], z, P[4]);

double p23 = __builtin_fma (P[3], z, P[2]);

...

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 3 / 16

Interpretations of an abstract expression

Cody & Waite argument reduction: e = (x− k× c1)− k× c2 (abstract)

[[e]]flt = (x−F k×F c1)−F k×F c2 (IEEE 754: what the algorithm computes)

[[e]]rnd = ◦(◦(x− ◦(kc1))− ◦(kc2)) (rounded real numbers: what we would like to reason about)

[[e]]exa = x− kc1 − kc2 (infinite-precision real numbers: useful for formal proofs)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 4 / 16

Interpretations of an abstract expression

Cody & Waite argument reduction: e = (x− k× c1)− k× c2 (abstract)

[[e]]flt = (x−F k×F c1)−F k×F c2 (IEEE 754: what the algorithm computes)

[[e]]rnd = ◦(◦(x− ◦(kc1))− ◦(kc2)) (rounded real numbers: what we would like to reason about)

[[e]]exa = x− kc1 − kc2 (infinite-precision real numbers: useful for formal proofs)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 4 / 16

Interpretations of an abstract expression

Cody & Waite argument reduction: e = (x− k× c1)− k× c2 (abstract)

[[e]]flt = (x−F k×F c1)−F k×F c2 (IEEE 754: what the algorithm computes)

[[e]]rnd = ◦(◦(x− ◦(kc1))− ◦(kc2)) (rounded real numbers: what we would like to reason about)

[[e]]exa = x− kc1 − kc2 (infinite-precision real numbers: useful for formal proofs)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 4 / 16

Interpretations of an abstract expression

Cody & Waite argument reduction: e = (x− k× c1)− k× c2 (abstract)

[[e]]flt = (x−F k×F c1)−F k×F c2 (IEEE 754: what the algorithm computes)

[[e]]rnd = ◦(◦(x− ◦(kc1))− ◦(kc2)) (rounded real numbers: what we would like to reason about)

[[e]]exa = x− kc1 − kc2 (infinite-precision real numbers: useful for formal proofs)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 4 / 16

Correctness of an abstract expression
If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

[[e]]flt is finite and |[[e]]flt/E − 1| ≤ ε

If e meets certain conditions, we have [[e]]flt = [[e]]rnd, in which case
it is sufficient to prove |[[e]]rnd/E − 1| ≤ ε

|[[e]]rnd/E − 1| ≤ ε is typically broken into |[[e]]rnd/[[e]]exa − 1| ≤ ε1 and |[[e]]exa/E − 1| ≤ ε2

→ Goal: Making this process less cumbersome for the user.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 5 / 16

Correctness of an abstract expression
If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

[[e]]flt is finite and |[[e]]flt/E − 1| ≤ ε

If e meets certain conditions, we have [[e]]flt = [[e]]rnd, in which case
it is sufficient to prove |[[e]]rnd/E − 1| ≤ ε

|[[e]]rnd/E − 1| ≤ ε is typically broken into |[[e]]rnd/[[e]]exa − 1| ≤ ε1 and |[[e]]exa/E − 1| ≤ ε2

→ Goal: Making this process less cumbersome for the user.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 5 / 16

Correctness of an abstract expression
If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

[[e]]flt is finite and |[[e]]flt/E − 1| ≤ ε

If e meets certain conditions, we have [[e]]flt = [[e]]rnd, in which case
it is sufficient to prove |[[e]]rnd/E − 1| ≤ ε

|[[e]]rnd/E − 1| ≤ ε is typically broken into |[[e]]rnd/[[e]]exa − 1| ≤ ε1 and |[[e]]exa/E − 1| ≤ ε2

→ Goal: Making this process less cumbersome for the user.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 5 / 16

Correctness of an abstract expression
If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

[[e]]flt is finite and |[[e]]flt/E − 1| ≤ ε

If e meets certain conditions, we have [[e]]flt = [[e]]rnd, in which case
it is sufficient to prove |[[e]]rnd/E − 1| ≤ ε

|[[e]]rnd/E − 1| ≤ ε is typically broken into |[[e]]rnd/[[e]]exa − 1| ≤ ε1 and |[[e]]exa/E − 1| ≤ ε2

→ Goal: Making this process less cumbersome for the user.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 5 / 16

Contribution

Abstract expressions:
Language and interpretations
Specification (relates [[.]]flt and [[.]]rnd)

Tools for the Coq proof assistant

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 6 / 16

Expressions and interpretations

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 7 / 16

Language of expressions
Let k = NearbyInt (Op MUL (Var x) InvLog2)

Let t = Op SUB

(OpExact SUB (Var x) (OpExact MUL (Var k) Log2h))

(Op MUL (Var k) Log2l)

←→ k ← nearbyint(x× C)
t ← x− k × c1 − k × c2

→ Supported operations: +, −, ×, /, √, ⌊ . ⌉, FMA, etc.

→ Exact results:
[[u+exact v]]flt = [[u]]flt +F [[v]]flt = [[u+ v]]flt

[[u+exact v]]rnd = [[u]]rnd + [[v]]rnd ̸= [[u+ v]]rnd

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 8 / 16

Language of expressions
Let k = NearbyInt (Op MUL (Var x) InvLog2)

Let t = Op SUB

(OpExact SUB (Var x) (OpExact MUL (Var k) Log2h))

(Op MUL (Var k) Log2l)

←→ k ← nearbyint(x× C)
t ← x− k × c1 − k × c2

→ Supported operations: +, −, ×, /, √, ⌊ . ⌉, FMA, etc.

→ Exact results:
[[u+exact v]]flt = [[u]]flt +F [[v]]flt = [[u+ v]]flt

[[u+exact v]]rnd = [[u]]rnd + [[v]]rnd ̸= [[u+ v]]rnd

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 8 / 16

Well-behaved expressions
First we want to prove [[e]]flt is finite and represents [[e]]rnd.

We define (by induction) a predicateWB on expressions such that
ifWB(e) holds then e is well-behaved.

WB(u/v) ≜

 WB(u) ∧WB(v)
∧ |[[v]]rnd| ≠ 0 (no division by 0)
∧ |◦([[u]]rnd/[[v]]rnd)| ≤ Ω (no overflow)

WB(u+exact v) ≜

 WB(u) ∧WB(v)
∧ ◦([[u]]rnd + [[v]]rnd) = [[u]]rnd + [[v]]rnd (produces exact result)
∧ |[[u]]rnd + [[v]]rnd| ≤ Ω (no overflow)

Correspondence theorem
WB(e)⇒ [[e]]flt �nite ∧ [[e]]flt = [[e]]rnd

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 9 / 16

Tools for the Coq proof assistant

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 10 / 16

Tools for the Coq proof assistant

Process a goal about [[e]]flt and apply correspondence theorem to obtain a goal about [[e]]rnd,
yields aWB(e) goal not ideal to prove by hand

Try to prove automatically all conjuncts ofWB(e)

Facilitate asserting a property on a subexpression (c.f. Cody & Waite)

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 11 / 16

simplify_wb

by hand, Gappa

by hand, Gappa

correspondence theorem

assert_subexpr

simplify_wb

intros

CoqInterval, Gappa

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 12 / 16

Automating proof ofWB(e)

Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval).
CoqInterval can perform finer interval arithmetic using Taylor models.
Gappa supports roundings and makes use of floating-point theorems.

|◦(u+ v)| ⩽ Ω can be proven using naïve interval arithmetic
v ̸= 0 can be proven using interval arithmetic with Taylor models
◦(x+ y) = x+ y generally cannot be proven using just interval arithmetic

→ Added support for roundings in CoqInterval’s naïve and Taylor-based provers.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 13 / 16

Automating proof ofWB(e)

Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval).
CoqInterval can perform finer interval arithmetic using Taylor models.
Gappa supports roundings and makes use of floating-point theorems.

|◦(u+ v)| ⩽ Ω can be proven using naïve interval arithmetic
v ̸= 0 can be proven using interval arithmetic with Taylor models
◦(x+ y) = x+ y generally cannot be proven using just interval arithmetic

→ Added support for roundings in CoqInterval’s naïve and Taylor-based provers.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 13 / 16

Automating proof ofWB(e)

Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval).
CoqInterval can perform finer interval arithmetic using Taylor models.
Gappa supports roundings and makes use of floating-point theorems.

|◦(u+ v)| ⩽ Ω can be proven using naïve interval arithmetic
v ̸= 0 can be proven using interval arithmetic with Taylor models
◦(x+ y) = x+ y generally cannot be proven using just interval arithmetic

→ Added support for roundings in CoqInterval’s naïve and Taylor-based provers.

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 13 / 16

Conclusion

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 14 / 16

Summary
We built a Coq tool for facilitating proofs about floating-point approximations.
Available in CoqInterval: https://coqinterval.gitlabpages.inria.fr/

Correctness of the polynomial approximation of CORE-MATH 64-bit logarithm:

−0.00203 ⩽ z ⩽ 0.00212→ [[P (z)]]flt finite ∧ |[[P (z)]]flt − (ln(1 + z)− z)| ≤ 2−68.72

⇒ Proved in 7 lines of Coq.

Tested examples are available here: https://gitlab.inria.fr/pgeneaud/examples
The CORE-MATH project: https://core-math.gitlabpages.inria.fr/

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 15 / 16

https://coqinterval.gitlabpages.inria.fr/
https://gitlab.inria.fr/pgeneaud/examples
https://core-math.gitlabpages.inria.fr/

Summary
We built a Coq tool for facilitating proofs about floating-point approximations.
Available in CoqInterval: https://coqinterval.gitlabpages.inria.fr/

Correctness of the polynomial approximation of CORE-MATH 64-bit logarithm:

−0.00203 ⩽ z ⩽ 0.00212→ [[P (z)]]flt finite ∧ |[[P (z)]]flt − (ln(1 + z)− z)| ≤ 2−68.72

⇒ Proved in 7 lines of Coq.

Tested examples are available here: https://gitlab.inria.fr/pgeneaud/examples
The CORE-MATH project: https://core-math.gitlabpages.inria.fr/

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 15 / 16

https://coqinterval.gitlabpages.inria.fr/
https://gitlab.inria.fr/pgeneaud/examples
https://core-math.gitlabpages.inria.fr/

Perspectives

→ Full correctness of the CORE-MATH logarithm: macro-operations (FastTwoSum),
tables of constants, support for control flow (language of instructions)

→ Support for higher-level procedures (argument reduction, polynomial/rational approximation, etc.)

→Working directly with C programs (translation from C to the language of expressions, and back)

LMF: https://lmf.cnrs.fr

©Mitsubishi Electric R&D Centre Europe Export Control: NLR | 16 / 16

https://lmf.cnrs.fr

	Introduction
	Main project
	Expressions and interpretations
	Tools for the Coq proof assistant

	Conclusion
	Conclusion

