Slimmer Formal Proofs for Mathematical Libraries

Paul Geneau de Lamarlière ${ }^{1,2}$, Guillaume Melquiond ${ }^{2}$, Florian Faissole ${ }^{1}$

ARITH 2023, September 4th
${ }^{1}$ MITSUBISHI ELECTRIC R\&D CENTRE EUROPE
${ }^{2}$ UNIVERSITE PARIS-SACLAY, CNRS, ENS PARIS-SACLAY, INRIA, LMF
MFR2023-ARC-0439

Mathematical Libraries and Formal Proofs

 Changes for the BetterMuch work is done on finding floating-point approximations of real functions:

- Libraries of functions for single (32-bit) and double (64-bit) precision: CORE-MATH, CRLibm, etc.
- Automated generation of such functions: MetaLibm

```
W We want these functions to be accurate enough.
Proof with pen and paper is too long and subject to error: need for formal proofs.
But formal proof by hand is still cumbersome.
```


Mathematical Libraries and Formal Proofs

 Changes for the BetterMuch work is done on finding floating-point approximations of real functions:

- Libraries of functions for single (32-bit) and double (64-bit) precision: CORE-MATH, CRLibm, etc.
- Automated generation of such functions: MetaLibm
\rightarrow We want these functions to be accurate enough.
Proof with pen and paper is too long and subject to error: need for formal proofs. But formal proof by hand is still cumbersome.

Correctness of floating-point algorithms

```
def cw_exp(x):
    if }x<-746
        return 0
    else if 710<x:
        return +\infty
    else:
        k
        t}\leftarrowx-k\times\mp@subsup{c}{1}{}-k\times\mp@subsup{c}{2}{
        t2}\leftarrowt\times
        p}\leftarrow\mp@subsup{p}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{p}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{p}{2}{}
        q}\leftarrow\mp@subsup{q}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{q}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{q}{2}{}
        f}\leftarrow(t\timesp)/(q-t\timesp)+1/2
        return f < 2 
```

\rightarrow Crucial details of correctness proof:
- t is close enough to $x-k \ln 2: x-k \times c_{1}$ is performed exactly
- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

Correctness of floating-point algorithms

```
def cw_exp(x):
    if }x<-746
        return 0
    else if 710<x:
        return +\infty
    else:
        t}\leftarrowx-k\times\mp@subsup{c}{1}{}-k\times\mp@subsup{c}{2}{
        t2}\leftarrowt\times
        p}\leftarrow\mp@subsup{p}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{p}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{p}{2}{}
        q}\leftarrow\mp@subsup{q}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{q}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{q}{2}{}
        f}\leftarrow(t\timesp)/(q-t\timesp)+1/2
        return f}\times\mp@subsup{2}{}{k+1
```

\rightarrow Crucial details of correctness proof:

- t is close enough to $x-k \ln 2: x-k \times c_{1}$ is performed exactly
- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

Correctness of floating-point algorithms

```
def cw_exp(x):
    if }x<-746
        return 0
    else if 710<x:
        return +\infty
    else:
        t}\leftarrowx-k\times\mp@subsup{c}{1}{}-k\times\mp@subsup{c}{2}{
        t2}\leftarrowt\times
        p}\leftarrow\mp@subsup{p}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{p}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{p}{2}{}
        q}\leftarrow\mp@subsup{q}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{q}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{q}{2}{}
        f}\leftarrow(t\timesp)/(q-t\timesp)+1/2
        return f < 2 
```

\rightarrow Crucial details of correctness proof:

- t is close enough to $x-k \ln 2: x-k \times c_{1}$ is performed exactly
- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

Correctness of floating-point algorithms

```
def cw_exp(x):
    if }x<-746
        return 0
    else if 710<x:
        return +\infty
    else:
        l}\begin{array}{l}{k}\\{t}\end{array}\leftarrow\mathrm{ nearbyint (x>C)
        t2}\leftarrowt\times
        p}\leftarrow\mp@subsup{p}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{p}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{p}{2}{}
        q}\leftarrow\mp@subsup{q}{0}{}+\mp@subsup{t}{2}{}\times(\mp@subsup{q}{1}{}+\mp@subsup{t}{2}{}\times\mp@subsup{q}{2}{}
        f}\leftarrow(t\timesp)/(q-t\timesp)+1/2
        return f}\times\mp@subsup{2}{}{k+1
```

\rightarrow Crucial details of correctness proof:

- t is close enough to $x-k \ln 2: x-k \times c_{1}$ is performed exactly
- No exceptional behaviour occurs in the approximation part
- The latter is a good enough approximation

CORE-MATH logarithm:

```
static void cr_log_fast (double *h, double *l, int e, d64u64 v)
{
    uint64_t m = 0x10000000000000 + (v.u & 0xfffffffffffff);
    /* x = m/2~52 */
    /* if x > sqrt(2), we divide it by 2 to avoid cancellation */
    int c=m >= 0x16a09e667f3bcd;
    e += c; /* now - 1074<= e <= 1024 */
    static const double cy[] = {1.0, 0.5};
    static const uint64_t cm[] = {43, 44};
    int i =m >> cm[c];
    double y = v.f * cy[c];
    double r = (_INVERSE - OFFSET)[i];
    double z = __builltin_fma (r, y, -1.0); /* exact */
```

```
    /* evaluate P(z), for |z| < 0.00212097167968735 */
```

 /* evaluate P(z), for |z| < 0.00212097167968735 */
 double z2 = z * z;
 double z2 = z * z;
 double p45 = __builtin_fma (P[5], z, P[4]);
 double p45 = __builtin_fma (P[5], z, P[4]);
 double p23 = __builtin_fma (P[3], z, P[2]);
    ```
    double p23 = __builtin_fma (P[3], z, P[2]);
```


Interpretations of an abstract expression

 Changes for the BetterCody \& Waite argument reduction: $e=\left(\mathbf{x}-\mathbf{k} \times \mathbf{c}_{\mathbf{1}}\right)-\mathbf{k} \times \mathbf{c}_{\mathbf{2}}$ (abstract)

- $\llbracket e \rrbracket_{\mathrm{flt}}=\left(\mathbf{x}-_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{1}\right)-\mathbb{F} \mathbf{k} \times{ }_{\mathbb{F}} \mathbf{c}_{2}$ (IEEE 754: what the algorithm computes)
$\bullet \llbracket \rrbracket_{\mathrm{rnd}}=\circ\left(\circ\left(x-\circ\left(k c_{1}\right)\right)-\circ\left(k c_{2}\right)\right)$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{\text {exa }}=x-k c_{1}-k c_{2}$ (infinite-precision real numbers: useful for formal proofs)

Interpretations of an abstract expression

 Changes for the BetterCody \& Waite argument reduction: $e=\left(\mathbf{x}-\mathbf{k} \times \mathbf{c}_{\mathbf{1}}\right)-\mathbf{k} \times \mathbf{c}_{\mathbf{2}}$ (abstract)

- $\llbracket e \rrbracket_{\mathrm{flt}}=\left(\mathbf{x}-_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{\mathbf{1}}\right)-\mathbb{F} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{\mathbf{2}}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{\mathrm{rnd}}=\circ\left(\circ\left(x-\circ\left(k c_{1}\right)\right)-\circ\left(k c_{2}\right)\right)$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{\text {exa }}=x-k c_{1}-k c_{2}$ (infinite-precision real numbers: useful for formal proofs)

Interpretations of an abstract expression

Cody \& Waite argument reduction: $e=\left(\mathbf{x}-\mathbf{k} \times \mathbf{c}_{\mathbf{1}}\right)-\mathbf{k} \times \mathbf{c}_{\mathbf{2}}$ (abstract)

- $\llbracket e \rrbracket_{\mathrm{flt}}=\left(\mathbf{x}-_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{\mathbf{1}}\right)-_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{\mathbf{2}}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{\mathrm{rnd}}=\circ\left(\circ\left(x-\circ\left(k c_{1}\right)\right)-\circ\left(k c_{2}\right)\right)$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{\text {exa }}=x-k c_{1}-k c_{2}$ (infinite-precision real numbers: useful for formal proofs)

Interpretations of an abstract expression

Cody \& Waite argument reduction: $e=\left(\mathbf{x}-\mathbf{k} \times \mathbf{c}_{\mathbf{1}}\right)-\mathbf{k} \times \mathbf{c}_{\mathbf{2}}$ (abstract)

- $\llbracket e \rrbracket_{\mathrm{flt}}=\left(\mathbf{x}-_{\mathbb{F}} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{\mathbf{1}}\right)-\mathbb{F} \mathbf{k} \times_{\mathbb{F}} \mathbf{c}_{\mathbf{2}}$ (IEEE 754: what the algorithm computes)
- $\llbracket e \rrbracket_{\mathrm{rnd}}=\circ\left(\circ\left(x-\circ\left(k c_{1}\right)\right)-\circ\left(k c_{2}\right)\right)$ (rounded real numbers: what we would like to reason about)
- $\llbracket e \rrbracket_{\text {exa }}=x-k c_{1}-k c_{2}$ (infinite-precision real numbers: useful for formal proofs)

Correctness of an abstract expression

If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

$$
\llbracket e \rrbracket_{\mathrm{ft}} \text { is finite and }\left|\llbracket e \rrbracket_{\mathrm{ft}} / E-1\right| \leq \varepsilon
$$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{f l t}=\llbracket e \rrbracket_{\mathrm{rnd}}$, in which case it is sufficient to prove $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$
- $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$ is typically broken into $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / \llbracket e \rrbracket_{\text {exa }}-1\right| \leq \varepsilon_{1}$ and $\left|\llbracket e \rrbracket_{\text {exa }} / E-1\right| \leq \varepsilon_{2}$
\rightarrow Goal: Making this process less cumbersome for the user.

Correctness of an abstract expression

If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

$$
\llbracket e \rrbracket_{\mathrm{ft}} \text { is finite and }\left|\llbracket e \rrbracket_{\mathrm{ft}} / E-1\right| \leq \varepsilon
$$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{\mathrm{flt}}=\llbracket e \rrbracket_{\mathrm{rnd}}$, in which case it is sufficient to prove $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$
- $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$ is typically broken into $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / \llbracket e \rrbracket_{\text {exa }}-1\right| \leq \varepsilon_{1}$ and $\left|\llbracket e \rrbracket_{\text {exa }} / E-1\right| \leq \varepsilon_{2}$

\rightarrow Goal: Making this process less cumbersome for the user.

Correctness of an abstract expression

If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

$$
\llbracket e \rrbracket_{\mathrm{ft}} \text { is finite and }\left|\llbracket e \rrbracket_{\mathrm{ft}} / E-1\right| \leq \varepsilon
$$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{\mathrm{flt}}=\llbracket e \rrbracket_{\mathrm{rnd}}$, in which case it is sufficient to prove $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$
- $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$ is typically broken into $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / \llbracket e \rrbracket_{\text {exa }}-1\right| \leq \varepsilon_{1}$ and $\left|\llbracket e \rrbracket_{\text {exa }} / E-1\right| \leq \varepsilon_{2}$

\rightarrow Goal: Making this process less cumbersome for the user.

Correctness of an abstract expression

If e is meant to approximate some ideal value E, we want to prove an assertion of the form:

$$
\llbracket e \rrbracket_{\mathrm{ft}} \text { is finite and }\left|\llbracket e \rrbracket_{\mathrm{ft}} / E-1\right| \leq \varepsilon
$$

- If e meets certain conditions, we have $\llbracket e \rrbracket_{\text {flt }}=\llbracket e \rrbracket_{\mathrm{rnd}}$, in which case it is sufficient to prove $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$
- $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / E-1\right| \leq \varepsilon$ is typically broken into $\left|\llbracket e \rrbracket_{\mathrm{rnd}} / \llbracket e \rrbracket_{\text {exa }}-1\right| \leq \varepsilon_{1}$ and $\left|\llbracket e \rrbracket_{\text {exa }} / E-1\right| \leq \varepsilon_{2}$
\rightarrow Goal: Making this process less cumbersome for the user.

Contribution

- Abstract expressions:
- Language and interpretations
- Specification (relates $\llbracket . \rrbracket_{\mathrm{flt}}$ and $\llbracket . \rrbracket_{\mathrm{rnd}}$)
- Tools for the Coq proof assistant Changes for the Better

Expressions and interpretations

Language of expressions

```
Let k = NearbyInt (Op MUL (Var x) InvLog2)
Let t = Op SUB
    (OpExact SUB (Var x) (OpExact MUL (Var k) Log2h))
    (Op MUL (Var k) Log2l)
```

\rightarrow Supported operations: $+,-, \times, /, \sqrt{ },\lfloor$.$\rceil , FMA, etc.$

\rightarrow Exact results:

- $\llbracket u+_{\text {exact }} v \rrbracket_{\mathrm{flt}}=\llbracket u \rrbracket_{\mathrm{flt}}+\mathbb{F} \llbracket v \rrbracket_{\mathrm{flt}}=\llbracket u+v \rrbracket_{\mathrm{flt}}$
- $\llbracket u+_{\text {exact }} v \rrbracket_{\mathrm{rnd}}=\llbracket u \rrbracket_{\mathrm{rnd}}+\llbracket v \rrbracket_{\mathrm{rnd}} \neq \llbracket u+v \rrbracket_{\mathrm{rnd}}$

Language of expressions

```
Let k = NearbyInt (Op MUL (Var x) InvLog2)
Let t = Op SUB
    (OpExact SUB (Var x) (OpExact MUL (Var k) Log2h))
```

 (Op MUL (Var k) Log2l)
 \rightarrow Supported operations: $+,-, \times, /, \sqrt{ },\lfloor$.$\rceil , FMA, etc.$
\rightarrow Exact results:

- $\llbracket u+_{\text {exact }} v \rrbracket_{\mathrm{flt}}=\llbracket u \rrbracket_{\mathrm{flt}}+_{\mathbb{F}} \llbracket v \rrbracket_{\mathrm{flt}}=\llbracket u+v \rrbracket_{\mathrm{flt}}$
- $\llbracket u+_{\text {exact }} v \rrbracket_{\mathrm{rnd}}=\llbracket u \rrbracket_{\mathrm{rnd}}+\llbracket v \rrbracket_{\mathrm{rnd}} \neq \llbracket u+v \rrbracket_{\mathrm{rnd}}$

First we want to prove $\llbracket e \rrbracket_{\mathrm{flt}}$ is finite and represents $\llbracket e \rrbracket_{\text {rnd }}$.
We define (by induction) a predicate WB on expressions such that if $\mathrm{WB}(e)$ holds then e is well-behaved.

- $\mathrm{WB}(u / v) \triangleq \begin{cases} & \mathrm{WB}(u) \wedge \mathrm{WB}(v) \\ \wedge & \left|\llbracket v \rrbracket_{\mathrm{rnd}}\right| \neq 0 \\ \wedge & \left|\circ\left(\llbracket u \rrbracket_{\mathrm{rd}} / \llbracket v \rrbracket_{\mathrm{rdd}}\right)\right| \leq \Omega\end{cases}$
- $\mathrm{WB}\left(u+_{\text {exact }} v\right) \triangleq\left\{\begin{array}{lll} & \mathrm{WB}(u) \wedge \mathrm{WB}(v) \\ \wedge & \circ\left(\llbracket u \rrbracket_{\text {rnd }}+\llbracket v \rrbracket_{\mathrm{rnd}}\right)=\llbracket u \rrbracket_{\mathrm{rnd}}+\llbracket v \rrbracket_{\mathrm{rnd}} & \text { (produces exact result) } \\ \wedge & \left|\llbracket u \rrbracket_{\mathrm{rnd}}+\llbracket v \rrbracket_{\mathrm{rnd}}\right| \leq \Omega & \text { (no overflow) }\end{array}\right.$

Correspondence theorem

$$
\mathrm{WB}(e) \Rightarrow \llbracket e \rrbracket_{\mathrm{flt}} \text { finite } \wedge \llbracket e \rrbracket_{\mathrm{flt}}=\llbracket e \rrbracket_{\mathrm{rnd}}
$$

Tools for the Coq proof assistant

Tools for the Coq proof assistant

- Process a goal about $\llbracket e \rrbracket_{\mathrm{flt}}$ and apply correspondence theorem to obtain a goal about $\llbracket e \rrbracket_{\mathrm{rnd}}$, yields a $\mathrm{WB}(e)$ goal not ideal to prove by hand
- Try to prove automatically all conjuncts of $\mathrm{WB}(e)$
- Facilitate asserting a property on a subexpression (c.f. Cody \& Waite)

Changes for the Better

\llbracket let $t:=\ldots$ in $e \rrbracket_{\mathrm{ftt}}$ is finite $\wedge \mid \llbracket$ let $t:=\ldots$ in $e \rrbracket_{\mathrm{ftt}} / \exp (t)-1 \mid \leqslant \varepsilon$

Automating proof of $\mathrm{WB}(e)$

Automatic tools use interval arithmetic (c.f. Gappa, CoqInterval). CoqInterval can perform finer interval arithmetic using Taylor models. Gappa supports roundings and makes use of floating-point theorems.

- $|\circ(u+v)| \leqslant \Omega$ can be proven using naïve interval arithmetic
- $v \neq 0$ can be proven using interval arithmetic with Taylor models
- $\circ(x+y)=x+y$ generally cannot be proven using just interval arithmetic
\rightarrow Added support for roundings in CoqInterval's naïve and Taylor-based provers.

Automating proof of $\mathrm{WB}(e)$

 Changes for the BetterAutomatic tools use interval arithmetic (c.f. Gappa, CoqInterval).
CoqInterval can perform finer interval arithmetic using Taylor models. Gappa supports roundings and makes use of floating-point theorems.

- $|\circ(u+v)| \leqslant \Omega$ can be proven using naïve interval arithmetic
- $v \neq 0$ can be proven using interval arithmetic with Taylor models
- $\circ(x+y)=x+y$ generally cannot be proven using just interval arithmetic

$$
\rightarrow \text { Added support for roundings in CoqInterval's naïve and Taylor-based provers. }
$$

Automating proof of $\mathrm{WB}(e)$

 Changes for the BetterAutomatic tools use interval arithmetic (c.f. Gappa, CoqInterval).
CoqInterval can perform finer interval arithmetic using Taylor models. Gappa supports roundings and makes use of floating-point theorems.

- $|\circ(u+v)| \leqslant \Omega$ can be proven using naïve interval arithmetic
- $v \neq 0$ can be proven using interval arithmetic with Taylor models
- $\circ(x+y)=x+y$ generally cannot be proven using just interval arithmetic
\rightarrow Added support for roundings in CoqInterval's naïve and Taylor-based provers.

Conclusion

Summary

 Changes for the BetterWe built a Coq tool for facilitating proofs about floating-point approximations. Available in Coqlnterval: https://coqinterval.gitlabpages.inria.fr/

Correctness of the polynomial approximation of CORE-MATH 64-bit logarithm:
$-0.00203 \leqslant z \leqslant 0.00212 \rightarrow \llbracket P(z) \rrbracket_{\mathrm{flt}}$ finite $\wedge\left|\llbracket P(z) \rrbracket_{\mathrm{flt}}-(\ln (1+z)-z)\right| \leq 2^{-68.72}$
\Rightarrow Proved in 7 lines of Coq.

Tested examples are available here: https://gitlab.inria.fr/pgeneaud/examples The CORE-MATH project: https://core-math.gitlabpages.inria.fr/

Summary

 Changes for the BetterWe built a Coq tool for facilitating proofs about floating-point approximations. Available in Coqlnterval: https://coqinterval.gitlabpages.inria.fr/

Correctness of the polynomial approximation of CORE-MATH 64-bit logarithm:

$$
-0.00203 \leqslant z \leqslant 0.00212 \rightarrow \llbracket P(z) \rrbracket_{\mathrm{flt}} \text { finite } \wedge\left|\llbracket P(z) \rrbracket_{\mathrm{flt}}-(\ln (1+z)-z)\right| \leq 2^{-68.72}
$$

\Rightarrow Proved in 7 lines of Coq.

Tested examples are available here: https://gitlab.inria.fr/pgeneaud/examples The CORE-MATH project: https://core-math.gitlabpages.inria.fr/

Perspectives

\rightarrow Full correctness of the CORE-MATH logarithm: macro-operations (FastTwoSum), tables of constants, support for control flow (language of instructions)
\rightarrow Support for higher-level procedures (argument reduction, polynomial/rational approximation, etc.)
\rightarrow Working directly with C programs (translation from C to the language of expressions, and back)

LMF: https://lmf.cnrs.fr

