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What is LAProof?

LAProof is a library of machine-checked accuracy proofs for basic linear algebra operations.
The accuracy proofs from LAProof

e assume only a low-level formal model of IEEE-754 arithmetic,

e are mixed (backward-forward) rounding error bounds that account for underflow,

e capture low order error terms exactly - not approximating as O(u?),

e canbeused to formally verify the accuracy of programs implementing operations defined by
the basic linear algebra subprograms (BLAS) specification, and

e aredeveloped entirely within the Coq proof assistant.

O VeriNum |/ LAProof



Why verify the accuracy of programs implementing
BLAS?



BLAS implementations are vital in numerical analysis

“..our mission is to compute quantities that are typically uncomputable, from an analytic point of view,
and to do it with lightning speed.” - Trefethen 1992
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What is a machine-checked proof?

e Aformalderivation in a formal logical system, checked by a proof-checking program
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What is a machine-checked proof?

e Aformalderivation in a formal logical system, checked by a proof-checking program

e A common tool for developing machine checked proofs is a proof assistant

e Proof assistants provide
o aDSL (domain-specific language) for building proofs
o aprogram that verifies whether proofs are valid derivations in a formal logic

o libraries of definitions, theorems, and programs for proof automation

proof assistant

—l-

logic engine

— proof checker

* adapted from Ringer et al, 2019.
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What is a machine-checked proof?

e Aformalderivation in a formal logical system, checked by a proof-checking program

e A common tool for developing machine checked proofs is a proof assistant

e Proof assistants provide
o aDSL (domain-specific language) for building proofs
o aprogram that verifies whether proofs are valid derivations in a formal logic

o libraries of definitions, theorems, and programs for proof automation

proof assistant

IR

logic engine

— proof checker

/V

\x

* adapted from Ringer et al, 2019.

' J e The Coq proof assistant - free, open-source software; development largely supported by INRIA
( (The National Institute for Research in Digital Science and Technology) since 1989. 21



Which linear algebra operations does LAProof
provide machine-checked accuracy proofs for?
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What operations does LAProof provide?

TABLE 1 TABLE II TABLE III
LAPROOF VECTOR OPERATIONS  LAPROOF MATRIX-VECTOR OPERATIONS LAPROOF MATRIX OPERATIONS
DOT T 2Ty MV r+ Azx sMat R+ A
MM R+ AB
sVec T4 ax MV ¥ A e - e
SUM P > —
T Dyt GEMV | r + oAz + By
VecAdd rT—zx+y sMM R + aAB
VecAXPBY | r < az + By MatAXPBY | R+ aX +B8Y
VecNRM1 | 7« ||z GEMM | R« aAX + Y
VecNRM2 r < ||z||2
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How are LAProof operations defined?

Matrices and vectors are defined using polymorphic lists.

Definition matrix (T : Type) :
Definition vector (T : Type) :

List {list T).
tisE T.

T

Coqg’s axiomatic reals

Flocq’s [Boldo & Melquiond, 2011]
IEEE-754 binary floats at any
precision
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How are LAProof operations defined?

Matrices and vectors are defined using polymorphic lists.

Definition matrix (T : Type) :
Definition vector (T : Type) :

st T.

List {(list ‘T).

Operations are simple higher-order polymorphic functional programs.

Variable dot : vector T — vector T — T.

Variables (A : matrix T) (v : vector T).

matrix-vector __y, Definition MV : vector T
product := map (fun a = dot a v) A.
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How do we ensure the correctness of LAProof operations?

Extension to the Mathematical Components (MathComp) Library [Mahboubi et al., 2022]
Components

The Mathematical Components repository

The Mathematical Components Library is an extensive and coherent repository of formalized mathematical
theories. It is based on the Coq proof assistant, powered with the Coq/SSReflect language.

e Oiriginally developed for formal proofs of the four color theorem and the odd
order theorem

e Contains well developed and maintained libraries for real analysis and basic
linear algebra
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How do we ensure the correctness of LAProof operations?

Extension to the Mathematical Components (MathComp) Library [Mahboubi et al., 2022]
Components

e Define injections from LAProof matrices and vectors over Coq’s axiomatic reals

to MathComp’s matrices and vectors [Cohen et al., 2022]
e Prove that injections from LAProof operations to MathComp operations are

correct
e Provides added confidence and functionality
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How do we ensure the correctness of LAProof operations?

Extension to the Mathematical Components (MathComp) Library [Mahboubi et al., 2022]
Components

e Define injections from LAProof matrices and vectors over Coq’s axiomatic reals

to MathComp’s matrices and vectors [Cohen et al., 2022]
e Prove that injections from LAProof operations to MathComp operations are

correct
e Provides added confidence and functionality

Why not use MathComp in the first place?

e Coqlists are easier to use in proofs of program correctness [Cohen et al., 2022]
e More Coq users are familiar with Coq lists than MathComp (and SSReflect)
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What accuracy theorems does LAProof provide?
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What accuracy theorems does LAProof provide?

e Mixed (backward-forward) rounding error bounds that account for underflow
e Low order error terms captured exactly, not approximating as O(u?)
e Assume only alow-level formal model of IEEE-754 arithmetic provided by the Flocq library

37



LAProof accuracy theorems rely on the correctness
of the standard rounding error model

Flocq theorem: for IEEE arithmetic,

e —t—
flix op y)

fila op b) = (a op b)(14+6) + ¢
|5|Su, |6|Slrl, 56:0, 0p€{+7_’><’/7\/}

unit roundoff / \ underflow unit
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What accuracy theorems does LAProof provide?

e Backward error bounds when possible (e.g., summation).

¢F, . () = ¢r(T + Az)

Floating-point operation:
precision p, maximum exponent e

Rounding error is attributed to a small change in the input.
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What accuracy theorems does LAProof provide?

e Mixed (backward-forward) rounding error bounds that account for underflow.

or, . (z) = ¢r(z + Az) + )

f

Floating-point operation: accounts for underflow

precision p, maximum exponent e

Rounding error is attributed to a small change in the input, plus some small term that
accounts for underflow.
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What accuracy theorems does LAProof provide?

e Forward rounding error bounds are derived from mixed (or backward) error bounds.

F £ |¢r(z) — ¢F, . ()|

/

Floating-point operation:
precision p, maximum exponent e

41



An example: accuracy of matrix-vector product

e Mixed (backward-forward) rounding error bounds that account for underflow.

¢r, . () = ¢r(T + Az) + B

7

Definition MV : vector T
:=map (fun a = dot a v) A.

Rounding error is attributed to a small change in the input, plus some small term that
accounts for underflow.

42



An example: accuracy of matrix-vector product

Theorem 3 (bfMV). For any vector v € [} ., and matrix
A € F'2", there exists a matrix AA € R™*™ and vector

n € R™ such that
fl(Av) = (A + AA)y +n, (11)

where every element of the vector m respects the bound

In| < g(n,n) and each element of the matrix AA respects
the bound |AA| < h(n)|A|.
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An example: accuracy of matrix-vector product

Theorem 3 (bfMV). For any vector v € [} ., and matrix
A € F'2", there exists a matrix AA € R™*™ and vector

n € R™ such that
fl(Av) = (A + AA)y +n, (11)

where every element of the vector m respects the bound
—» 1| < g(n,n) and each element of the matrix AA respects
the bound |AA| < h(n)|A|. €—

h(n)=(14+4)" -1
g9(n,m) = nn(1 + h(m))
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What does the theorem look like in Coq?

p Variable (A: @matrix (ftype t)).
Variable (v: @vector (ftype t)).

Hypothesis Hfin : is_finite vec (A *f v).
Hypothesis Hlen: forall row, In row A -> length row

Lemma mat_vec_mul mixed error:

exists (E : matrix) (eta : vector),
A *fr v = (Ar +m E) *r vr +v eta
/\ (forall i j, (i < m)%nat -> (j < n)%nat ->

Rabs (E (i,j)) <= g n * Rabs (Ar (i,3j)))

/\ (forall k, In k eta -> Rabs k <= gl n n)
/\ eq size E A
/\ length eta = m.

length v.
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What does the theorem look like in Coq?

Variable (A: @matrix (ftype t)).
Variable (v: @vector (ftype t)).

Hypothesis Hfin : is_finite vec (A *f v).
Hypothesis Hlen: forall row, In row A -> length row = length v.

Lemma mat_vec_mul mixed error:

exis : matrix) (eta : vector),
Al*fr = (Ar +m E) *r vr +v eta
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What does the theorem look like in Coq?
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What does the theorem look like in Coq?

Variable (A: @matrix (ftype t)).
Variable (v: @vector (ftype t)).

Hypothesis Hfin : is _finite vec (A *f v).
Hypothesis Hlen: forall row, In row A -> length row

Lemma mat_vec_mul_mixed_error:

exists (E : matrix) (eta : vector),
A *fr v = (Ar +m E) *r vr +v eta
/\ (forall i j, (i < m)%nat -> (j < n)%nat ->

Rabs (E (i,j)) <= g n * Rabs (Ar (i,3j)))

/\ (forall k, In k eta -> Rabs k <= gl n n)
/\ eq size E A
/\ length eta = m.

length v.

e Formal proof ~120 lines of code
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How can we connect error bounds from LAProof to concrete
programs?
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Use LAProof operations in proofs of program correctness

void csr_mv_multiply (struct csr_matrix =m,

Example from the paper: prove the correctness of the double »v, double #p) {

function csr_mv_multiply, which implements unsigned i, Fows = m — rows;
i - = . . double *val = m — val;
matrix-vector multiplication using a compressed sparse unsigned xcol.ind = m — col.ind;
unsigned xrow_ptr = m — row_ptr;
row (CSR) format. unsigned next=row_ptr[0];

for (i1 = 0; 1 < rows; i++) {

double s = 0.0;

unsigned h = next;

next = row4_ptr[i+l];

for (h = 0; h < next; h++) {
double x = val[h];
unsigned j = col_ind[h];
double y = v[jl;
s = fma(x,y,s);

}

plil=s;

}}
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Use LAProof operations in proofs of program correctness

Example from the paper: prove the correctness of the
function csr_mv_multiply, which implements
matrix-vector multiplication using a compressed sparse
row (CSR) format.

e Write a specification of matrix-vector
multiplication using the LAProof operation.

e Prove(inCoq)that csr_mv_multiply complies
with this specification.

void csr_mv_multiply (struct csr_matrix =m,
double *xv, double xp) {
unsigned i, rows = m — rows;
double *xval = m — val;
unsigned *xcol_ind = m — col_ind;
unsigned xrow_ptr = m — row_ptr;
unsigned next=row_ptr[0];
for (i1 = 0; 1 < rows; i++) {
double s = 0.0;
unsigned h = next;
next = row4_ptr[i+l];
for (h = 0; h < next; h++) {
double x = val[h];
unsigned j = col_ind[h];
double y = v[jl;
s = fma(x,y,s);
}
plil=s;
1}
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Example: Prove the correctness of csr mv_multiply using VST

The Verified Software Toolchain (VST) [Appel et al., 2011]

e Acollection of verification tools for the C
language

e Implements (in Coq) a program logic for
reasoning about the correctness of C
programs

e Proved sound with respect to the CompCert
C compiler [Leroy et al., 2008]

Definition csr_mv_spec :=
DECLARE _csr_mv_multiply
WITH 71: share, mws: share, m3: share,
m: val, A: matrix Tdouble, v: val,
x: vector Tdouble, p: val
PRE [ tptr t_csr, tptr tdouble, tptr tdouble ]

POST [ tvoid ]
EX y: vector Tdouble,
PROP(Forall2 feq y (MVF A zx))
RETURN ()
SEP (csr_rep m; A m;
data_at w2 (tarray tdouble (Zlength z))
(map Vfloat z) v;
data_at w3 (tarray tdouble (matrix_rows A))
(map Vfloat y) p).
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Example: Prove the correctness of csr mv_multiply using VST

A function is specified by its precondition and its
postcondition

Definition csr_mv_spec :=

DECLARE _csr_mv_multiply

WITH 71: share, mws: share, m3: share,

m: val, A: matrix Tdouble, v: val,
x: vector Tdouble, p: val

PRE | tptr t_csr, tptr tdouble, tptr tdouble ]
POST| [ tvoid ] :

EX y: vector Tdouble,
PROP(Forall2 feq y (MVF A zx))
RETURN ()
SEP (csr_rep m; A m;
data_at w2 (tarray tdouble (Zlength z))
(map Vfloat z) v;
data_at w3 (tarray tdouble (matrix_rows A))
(map Vfloat y) p).
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Example: Prove the correctness of csr mv_multiply using VST

.. . . - . Definition csr_mv_spec :=
A function is specified by its precondition and its DECLARE _cSrmv. mulglply

postcondition WITH 71: share—zes—share z: share,
m: val, lA: matrix Tdouble,] v: val

. 2 * ’
e A x:formal models of the matrix and vector x: vector Tdouble, lp: val
begin multiplied. PRE [ Tptr t_csr, tptr tdouble, tptr tdouble ]

POST [ tvoid ]
EX y: vector Tdouble,
PROP(Forall2 feq y (MVF A zx))
RETURN ()
SEP (csr_rep m; A m;
data_at w2 (tarray tdouble (Zlength z))
(map Vfloat z) v;
data_at w3 (tarray tdouble (matrix_rows A))
(map Vfloat y) p).
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Example: Prove the correctness of csr mv_multiply using VST

Definition csr_mv_spec :=

A function is specified by its precondition and its DECLARE _csr_mv_multiply

postcondition WITH ma re, my: share, m3: share,
Lm: val, A: matrix Tdouble, v: val,

e A x:formal models of the matrix and vector z: vector Tdouble,

begin multiplied. PRE [ tptr t_csr, tptr tdoUDTE, tptr tdouble ]
e m:address where CSR representation of Ais POST [ tvoid ]

stored EX y: vector Tdouble,
e p:address where vector x is stored PROP(Forall2 feq y (MVF A z))

RETURN()

SEP (csr_rep m; A m;
data_at w2 (tarray tdouble (Zlength z))
(map Vfloat z) v;
data_at w3 (tarray tdouble (matrix_rows A))
(map Vfloat y) p).
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Example: Prove the correctness of csr mv_multiply using VST

A function is specified by its precondition and its
postcondition

e A x:formal models of the matrix and vector
begin multiplied.

e m:address where CSR representation of Ais
stored

e p:address where vector x is stored

e postcondition: the vector of y of double
precision floats exists, and...

Definition csr_mv_spec :=
DECLARE _csr_mv_multiply
WITH 71: share, mws: share, m3: share,
m: val, A: matrix Tdouble, v: val,
x: vector Tdouble, p: val
PRE [ tptr t_csr, tptr tdouble, tptr tdouble ]

Definition MV : vector T

P tVOid ] :=map (fun a = dot a v) A.
|EX y:|vector Tdouble, ‘/

(Forall2|feq y (MVF A x)
RETURN ()
SEP (csr_rep m; A m;

data_at w2 (tarray tdouble (Zlength z))
(map Vfloat z) v;
—Jp data_at w3 (tarray tdouble (matrix_rows A))
(map Vfloa p).
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Accuracy and correctness proofs compose

Theorem [accuracy and correctness]: the function csr_mv_multiply correctly and accurately
implements matrix-vector multiplication using a compressed sparse row format.

void csr_mv_multiply (struct csr_matrix xm,
double xv, double *p) {
unsigned i, rows = m — rows;
double *xval = m — val;
unsigned xcol_ind = m — col_ind;
unsigned xrow_ptr = m — row_ptr;
unsigned next=row_ptr[0];
for (i = 0; i < rows; i++) {
double s = 0.0;
unsigned h = next;
next = rowd_ptr[i+l];
for (h = 0; h < next; h++) {
double x = val[h];
unsigned j = col_ind[h];
double y = v[jl;
s = fma(x,y,s);
}
plil=s;
1}

61



In summary,

LAProof provides machine-checked proofs of accuracy for basic linear algebra operations
and these accuracy proofs can be connected to concrete programs implementing BLAS.

Accuracy proofs assume only a low-level formal model of IEEE-754 arithmetic.

The rounding error bounds in the accuracy proofs are mixed (backward-forward) error
bounds that account for underflow.

Rounding error bounds capture low order error terms exactly, not approximating as O(u?).

O VeriNum |/ LAProof
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Thanks for listening!
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