Newton-Raphson Integer Division for Area-Constrained Microcontrollers

Nima Badizadegan

ARITH 2023

September 4-6, 2023
to
t0 labs

Motivation

- Small MCUs often have single-cycle multiply, but slow divide
- Non-restoring division or radix-2 digit recurrence
- Sometimes microcode or software
- Fast algorithms take area for lookup tables
- High-radix digit recurrence needs lookup table
- Iterative algorithms need an initial approximation
- Motivating application: cryptographic MCU for algorithms that benefit from constant-time modulus, no FPU

Division by Iteration

- Start with an approximation and refine
- Quadratic convergence, 2 FMAs per round
- Large CPUs use multiplicative iteration for better parallelism, but we have no parallelism

$$
\begin{aligned}
x_{0} & =A_{1 / x}(D) \\
\epsilon_{n} & =1-D x_{n} \\
x_{n+1} & =x_{n}+x_{n} \epsilon_{n}=x_{n}\left(2-D x_{n}\right)
\end{aligned}
$$

Initial Approximations

- Target precision: 8 bits
- Typical approach: Faithful bipartite ROM tables
- Piecewise linear approximation
- 3.3 kbit for 8-bit precision + supporting HW
- Our approach: Quantized 4th order polynomial approximation, integrated into existing multiplier circuits

Expression Form and Coefficients

$$
\frac{1}{x} \approx 7.15766-20.1824 x+28.0257 x^{2}-19.17 x^{3}+5.17028 x^{4}
$$

\Downarrow Factor: $3 \rightarrow 2$ multiplications
$\frac{1}{x} \approx 5.1703\left(1.9687-2.6834 x+x^{2}\right)\left(0.70321-1.02432 x+x^{2}\right)$
\Downarrow Quantize coefficients

$$
\frac{1}{x} \approx 101_{b}\left(c_{1}-10.1011_{b} x+x^{2}\right)\left(c_{2}-1.00001_{b} x+x^{2}\right)
$$

Constants and Quantization

$$
A_{1 / x}(x)=101_{b} \underbrace{\left(c_{1}-10.1011_{b} x+x_{13} x^{2}\right)}_{14 \text { bit }} \underbrace{\left(c_{2}-1.00001_{b} x+x_{13} x^{2}\right)}_{12 \text { bit }}
$$

- Co-select constants and bit widths for each term: Optimal constants are not necessarily rounded unquantized values
- Brute force with $32 b$ word, SAT/LP solver for $64 b$
- We set c_{1} and c_{2} to underestimate so $D A_{1 / x}(D)<1$

Mapping to Hardware

$$
A_{1 / x}(x)=101_{b} \underbrace{\left(c_{1}-10.1011_{b} x+x^{2}\right)}_{p_{1}} \underbrace{\left(c_{2}-1.00001_{b} x+x^{2}\right)}_{p_{2}}
$$

- 13×13 multiply for x^{2}
- 7-term addition for p_{1}
- 5 -term addition for p_{2}
- 12×14 multiply with post-add for $5 p_{1} p_{2}$

Fitting into a Multiplier

- Booth code multiplier
- Vertical cuts: AND gates
- Horizontal cuts: multiplexing within compressor tree

Fitting into a Multiplier

```
                M,
            ,o<0,0
                *)
```



```
                -0)0
```



```
            *)
```



```
        *)
    *)
*)
```


Fitting into a Multiplier

Fitting into a Multiplier

Fitting into a Multiplier

- Horizontal cuts at bits 7 and 10 - need a compressor tree that fits

Modified Compressor Tree

Comparison to Common Compressor Trees

- All options use equivalent of 15 full adder cells
- 2 extra logic levels compared to Wallace Tree
- Same depth as 4:2 compressor tree with 4:2 standard cells

Array Multiplier

4:2 Compressor Tree

Wallace Tree

Our Compressor Tree

Circuit Size Expansion for Division Estimation

- 275 2:1

MUXes

- 46 adder cells
- 10 AND gates
- Under 350 gates total

	Count	Element
Generation of x^{2}		
Booth encoding MUXes	14	2:1 MUX
Partial product MUXes	26	$2: 1$ MUX
Carry out	14	Adder Cell
Generation of p_{1} and p_{2}		
New multiplier bits	6	Adder cell*
Carry chain breaks	10	AND gate
Adding x^{2} to p_{1}	28	$2: 1$ MUX
Partial product overrides	106	$2: 1$ MUX
Final computation adders	26	Adder Cell
Final product computation		
Booth encoding MUXes	13	$2: 1$ MUX
Partial product MUXes	24	$2: 1$ MUX
Multiplication by 5	32	$2: 1$ MUX
Extra output MUX port	32	$2: 1$ MUX*

Multiplication vs. Division Critical Path

- Critical paths similar length, but use the same cells in different order
- Problem for STA-based design flows

Two-Cycle Circuit: Bit Mapping

Cycle 2

- Separate output port from the top of the multiplier array, used for both cycles

Two-Cycle Circuit: Compressor Tree

Division Estimation Circuit Synthesis

Synthesized Circuit	Logic Elements	$f_{\text {max }}$ from STA
Wallace Tree Multiplier	2,172	80 MHz
Multiplier Tree Only	2,175	76 MHz
Division Estimation Only	1,310	82 MHz
One-cycle MUL/DIV	$2,340(+7.6 \%)$	$43 \mathrm{MHz}(-41 \%)$
Two-cycle MUL/DIV	$2,345(+7.8 \%)$	$71 \mathrm{MHz}(-6.6 \%)$

- Synthesized on MAX10 FPGA as a proxy for ASIC
- STA pessimistically estimates 41% frequency loss for one-cycle circuit

Division State Machine

- Self-contained system with just MCU datapath (gray) and added circuits for division (white)

Division State Machine

- RISC-V MCU datapath (two operands, one result)
- Added leading zero count to shifter
- Added two registers
- Added multiplier capabilities for division:
- Division approximation
- Integer FMA with shadow register for 3rd operand
- Adding 2^{32} to operand A on a signed multiplication
- Negating a multiplication
- Right-shifting output by 1

Division State Machine Algorithm

Cycle	Description	Operation
1	Left-justify $D \rightarrow D^{\prime} \in[0.5,1)$ in UQ0.32	$D^{\prime}=D \ll \operatorname{CLZ}(D)$
2	Estimate $X=1 / D$ in UQ1.31	$X=A_{1 / x}\left(D^{\prime}\right)$
3	NR round 1: Get error in UQ0.32	$T=\operatorname{mulhi}\left(X, D^{\prime}\right) \gg 1$
4	NR round 1: Refine X	$X=\operatorname{mulhi}\left[X,\left(2^{32}-T\right)\right]$
5	NR round 2: Get error	$T=\operatorname{mulhi}\left(X, D^{\prime}\right) \gg 1$
6	NR round 2: Refine X	$X=\operatorname{mulhi}\left[X,\left(2^{32}-T\right)\right]$
7	Calculate quotient	$Q^{\prime}=\operatorname{mulhi}(N, X)$
8	Shift quotient back	$Q=Q^{\prime} \gg \operatorname{CLZ(D)}$
9	Calculate remainder	$R=N-D Q$
10	Check remainder	$(R \geq D) ? R=R-D$
11	Fix quotient (if needed	$(R \geq D) ? Q=Q+1$

Division State Machine Algorithm

- Compute MOD before DIV
- 11 cycles for full computation of 32 bit integer division
- 1 cycle preparation
- 6 cycles core division algorithm
- 2 cycles finalization
- 2 cycles correction
- Preparation and finalization steps unique to integer ops
- Cycles 10-11 (correction) come from truncation in cycle 6, 11th cycle only when N is full width

Division State Machine: Early Termination

- Optional early termination for non-cryptographic division
- Uses leading zero count to upper-bound result MSB index

Case	Condition	Total Cycles
Divide by zero	$D=0$	3
Power of 2	$D^{\prime}=0.5$	3
Known zero result	$M S B<0$	4
8-bit precision (skip NR)	$0 \leq M S B<8$	$6-7$
16-bit precision (1 NR rounds)	$8 \leq M S B<16$	$8-9$
Full precision (2 NR rounds)	$16 \leq M S B<32$	$10-11$

Division State Machine Synthesis

Component	Size(LEs)
FMA with division estimation	2,491
Leading zero count	47
Power of 2 detection	13
Control state machine	56
Extra registers	66
Common datapath components	587

- 3,260 LEs total in MAX10 FPGA
- 2,673 of MUL/DIV components vs. 2,172 for MUL
- 501 LEs added for fast division vs. no division (+18\%)
- Synthesizes to $f_{\max }$ of MUL/DIV circuit (42 or 72 MHz)

Conclusions

- Microarchitecture for 32-bit integer division
- 11 cycle DIV and 10 cycle MOD with early termination
- Use quantized polynomial instead of lookup tables, combined with multiplier
- Combined MUL/DIV circuit is 8% larger than multiplier at 7% frequency cost
- Fast division for comparable increase in area to bit-at-a-time algorithms

