
Newton-Raphson Integer Division for
Area-Constrained Microcontrollers

Nima Badizadegan

ARITH 2023
September 4–6, 2023

t0 labs



Motivation

▶ Small MCUs often have single-cycle multiply, but slow
divide
▶ Non-restoring division or radix-2 digit recurrence
▶ Sometimes microcode or software

▶ Fast algorithms take area for lookup tables
▶ High-radix digit recurrence needs lookup table
▶ Iterative algorithms need an initial approximation

▶ Motivating application: cryptographic MCU for algorithms
that benefit from constant-time modulus, no FPU



Division by Iteration

▶ Start with an approximation and refine
▶ Quadratic convergence, 2 FMAs per round
▶ Large CPUs use multiplicative iteration for better

parallelism, but we have no parallelism

x0 = A1/x(D)
ϵn = 1− Dxn

xn+1 = xn + xnϵn = xn(2− Dxn)



Initial Approximations

▶ Target precision: 8 bits
▶ Typical approach: Faithful bipartite ROM tables

▶ Piecewise linear approximation
▶ 3.3 kbit for 8-bit precision + supporting HW

▶ Our approach: Quantized 4th order polynomial
approximation, integrated into existing multiplier circuits



Expression Form and Coefficients

1
x
≈ 7.15766− 20.1824x + 28.0257x2 − 19.17x3 + 5.17028x4

⇓ Factor: 3 → 2 multiplications
1
x
≈ 5.1703(1.9687− 2.6834x + x2)(0.70321− 1.02432x + x2)

⇓ Quantize coefficients
1
x
≈ 101b(c1 − 10.1011bx + x2)(c2 − 1.00001bx + x2)



Constants and Quantization

A1/x(x) = 101b (c1 − 10.1011bx + x2
13 bit

)︸ ︷︷ ︸
14 bit

(c2 − 1.00001bx + x2
13 bit

)︸ ︷︷ ︸
12 bit

▶ Co-select constants and bit widths for each term: Optimal
constants are not necessarily rounded unquantized values

▶ Brute force with 32b word, SAT/LP solver for 64b
▶ We set c1 and c2 to underestimate so DA1/x(D) < 1



Mapping to Hardware

A1/x(x) = 101b (c1 − 10.1011bx + x2)︸ ︷︷ ︸
p1

(c2 − 1.00001bx + x2)︸ ︷︷ ︸
p2

▶ 13× 13 multiply for x2

▶ 7-term addition for p1
▶ 5-term addition for p2
▶ 12× 14 multiply with post-add for 5p1p2



Fitting into a Multiplier

+

=
MUL result

▶ Booth code multiplier
▶ Vertical cuts: AND gates
▶ Horizontal cuts: multiplexing within compressor tree



Fitting into a Multiplier

x2



Fitting into a Multiplier

x2
p2



Fitting into a Multiplier

x2
p1

p2



Fitting into a Multiplier

x2
p1

p2

5p1p2

▶ Horizontal cuts at bits 7 and 10 - need a compressor tree
that fits



Modified Compressor Tree

+4:2

4:2
4:2

4:2
3:2

4:2

3:2

3:2

4:2

x2{

≪2

+
+

Bits 20-46

Bits 26-39

Bits 14-39

Bits 0-13
x2 carry

p1 and p2



Comparison to Common Compressor Trees

▶ All options use
equivalent of 15 full
adder cells

▶ 2 extra logic levels
compared to
Wallace Tree

▶ Same depth as 4:2
compressor tree
with 4:2 standard
cells

Array Multiplier Wallace Tree

4:2 Compressor Tree Our Compressor Tree



Circuit Size Expansion for Division Estimation

▶ 275 2:1
MUXes

▶ 46 adder cells
▶ 10 AND gates
▶ Under 350

gates total

Count Element
Generation of x2
Booth encoding MUXes 14 2:1 MUX
Partial product MUXes 26 2:1 MUX
Carry out 14 Adder Cell
Generation of p1 and p2
New multiplier bits 6 Adder cell*
Carry chain breaks 10 AND gate
Adding x2 to p1 28 2:1 MUX
Partial product overrides 106 2:1 MUX
Final computation adders 26 Adder Cell
Final product computation
Booth encoding MUXes 13 2:1 MUX
Partial product MUXes 24 2:1 MUX
Multiplication by 5 32 2:1 MUX
Extra output MUX port 32 2:1 MUX*



Multiplication vs. Division Critical Path

▶ Critical paths similar length, but use the same cells in
different order

▶ Problem for STA-based design flows



Two-Cycle Circuit: Bit Mapping

x2
p1

p2

5p1p2

Cycle 1 Cycle 2

▶ Separate output port from the top of the multiplier array,
used for both cycles



Two-Cycle Circuit: Compressor Tree

0, x2{
≪2

+4:2

4:2
4:2

4:2
3:2

4:2

3:2

3:2

4:2
+ DIVs

MULs



Division Estimation Circuit Synthesis

Synthesized Circuit Logic Elements fmax from STA
Wallace Tree Multiplier 2,172 80 MHz
Multiplier Tree Only 2,175 76 MHz
Division Estimation Only 1,310 82 MHz
One-cycle MUL/DIV 2,340 (+7.6%) 43 MHz (-41%)
Two-cycle MUL/DIV 2,345 (+7.8%) 71 MHz (-6.6%)

▶ Synthesized on MAX10 FPGA as a proxy for ASIC
▶ STA pessimistically estimates 41% frequency loss for

one-cycle circuit



Division State Machine

CLZ S

M

FMA/
Approx

ALU

Shifter

Re
su

lt
M
ux

A
M
ux

B
M
ux

Bypass
Reg

Extra
Registers

N
D

N
D

Immediate
Gen

▶ Self-contained system with just MCU datapath (gray) and
added circuits for division (white)



Division State Machine

▶ RISC-V MCU datapath (two operands, one result)
▶ Added leading zero count to shifter
▶ Added two registers
▶ Added multiplier capabilities for division:

▶ Division approximation
▶ Integer FMA with shadow register for 3rd operand
▶ Adding 232 to operand A on a signed multiplication
▶ Negating a multiplication
▶ Right-shifting output by 1



Division State Machine Algorithm
Cycle Description Operation

1 Left-justify D → D′ ∈ [0.5, 1) in UQ0.32 D′ = D ≪ CLZ(D)
2 Estimate X = 1/D in UQ1.31 X = A1/x(D′)
3 NR round 1: Get error in UQ0.32 T = mulhi(X,D′) ≫ 1
4 NR round 1: Refine X X = mulhi[X, (232 − T)]
5 NR round 2: Get error T = mulhi(X,D′) ≫ 1
6 NR round 2: Refine X X = mulhi[X, (232 − T)]
7 Calculate quotient Q′ = mulhi(N,X)
8 Shift quotient back Q = Q′ ≫ CLZ(D)
9 Calculate remainder R = N− DQ
10 Check remainder (R ≥ D)?R = R− D
11 Fix quotient (if needed) (R ≥ D)?Q = Q+ 1



Division State Machine Algorithm

▶ Compute MOD before DIV
▶ 11 cycles for full computation of 32 bit integer division

▶ 1 cycle preparation
▶ 6 cycles core division algorithm
▶ 2 cycles finalization
▶ 2 cycles correction

▶ Preparation and finalization steps unique to integer ops
▶ Cycles 10-11 (correction) come from truncation in cycle 6,

11th cycle only when N is full width



Division State Machine: Early Termination

▶ Optional early termination for non-cryptographic division
▶ Uses leading zero count to upper-bound result MSB index

Case Condition Total Cycles
Divide by zero D = 0 3
Power of 2 D′ = 0.5 3
Known zero result MSB < 0 4
8-bit precision (skip NR) 0 ≤ MSB < 8 6–7
16-bit precision (1 NR rounds) 8 ≤ MSB < 16 8–9
Full precision (2 NR rounds) 16 ≤ MSB < 32 10–11



Division State Machine Synthesis
Component Size(LEs)
FMA with division estimation 2,491
Leading zero count 47
Power of 2 detection 13
Control state machine 56
Extra registers 66
Common datapath components 587

▶ 3,260 LEs total in MAX10 FPGA
▶ 2,673 of MUL/DIV components vs. 2,172 for MUL

▶ 501 LEs added for fast division vs. no division (+18%)
▶ Synthesizes to fmax of MUL/DIV circuit (42 or 72 MHz)



Conclusions

▶ Microarchitecture for 32-bit integer division
▶ 11 cycle DIV and 10 cycle MOD with early termination
▶ Use quantized polynomial instead of lookup tables,

combined with multiplier
▶ Combined MUL/DIV circuit is 8% larger than multiplier at

7% frequency cost
▶ Fast division for comparable increase in area to

bit-at-a-time algorithms


