Newton-Raphson Integer Division for Area-Constrained Microcontrollers

Nima Badizadegan

ARITH 2023 September 4–6, 2023

Motivation

- Small MCUs often have single-cycle multiply, but slow divide
 - Non-restoring division or radix-2 digit recurrence
 - Sometimes microcode or software
- Fast algorithms take area for lookup tables
 - High-radix digit recurrence needs lookup table
 - Iterative algorithms need an initial approximation
- Motivating application: cryptographic MCU for algorithms that benefit from constant-time modulus, no FPU

Division by Iteration

- Start with an approximation and refine
- Quadratic convergence, 2 FMAs per round
- Large CPUs use multiplicative iteration for better parallelism, but we have no parallelism

$$\begin{aligned} x_0 &= A_{1/x}(D) \\ \epsilon_n &= 1 - Dx_n \\ x_{n+1} &= x_n + x_n \epsilon_n = x_n (2 - Dx_n) \end{aligned}$$

Initial Approximations

- Target precision: 8 bits
- Typical approach: Faithful bipartite ROM tables
 - Piecewise linear approximation
 - 3.3 kbit for 8-bit precision + supporting HW
- Our approach: Quantized 4th order polynomial approximation, integrated into existing multiplier circuits

Expression Form and Coefficients

$$\begin{split} \frac{1}{x} &\approx 7.15766 - 20.1824x + 28.0257x^2 - 19.17x^3 + 5.17028x^4 \\ & \Downarrow \text{ Factor: } 3 \rightarrow 2 \text{ multiplications} \\ \frac{1}{x} &\approx 5.1703(1.9687 - 2.6834x + x^2)(0.70321 - 1.02432x + x^2) \\ & \Downarrow \text{ Quantize coefficients} \\ & \frac{1}{x} &\approx 101_b(c_1 - 10.1011_bx + x^2)(c_2 - 1.00001_bx + x^2) \end{split}$$

t0

Constants and Quantization

$$A_{1/x}(x) = 101_b \underbrace{(c_1 - 10.1011_b x + \frac{x^2}{13 \text{ bit}})(c_2 - 1.00001_b x + \frac{x^2}{13 \text{ bit}})}_{14 \text{ bit}} \underbrace{(c_2 - 1.00001_b x + \frac{x^2}{13 \text{ bit}})}_{12 \text{ bit}}$$

- Co-select constants and bit widths for each term: Optimal constants are not necessarily rounded unquantized values
- Brute force with 32b word, SAT/LP solver for 64b
- We set c_1 and c_2 to underestimate so $DA_{1/x}(D) < 1$

Mapping to Hardware

$$A_{1/x}(x) = 101_b \underbrace{(c_1 - 10.1011_b x + x^2)}_{p_1} \underbrace{(c_2 - 1.00001_b x + x^2)}_{p_2}$$

- ▶ 13 × 13 multiply for x^2
- 7-term addition for p₁
- ▶ 5-term addition for *p*₂
- 12×14 multiply with post-add for $5p_1p_2$

- Booth code multiplier
- Vertical cuts: AND gates
- Horizontal cuts: multiplexing within compressor tree

 Horizontal cuts at bits 7 and 10 - need a compressor tree that fits

Modified Compressor Tree

Comparison to Common Compressor Trees

- All options use equivalent of 15 full adder cells
- 2 extra logic levels compared to Wallace Tree
- Same depth as 4:2 compressor tree with 4:2 standard cells

4:2 Compressor Tree

Circuit Size Expansion for Division Estimation

 275 2:1 MUXes

46 adder cells

10 AND gates

 Under 350 gates total

	Count	Element
Generation of x^2		
Booth encoding MUXes	14	2:1 MUX
Partial product MUXes	26	2:1 MUX
Carry out	14	Adder Cell
Generation of p_1 and p_2		
New multiplier bits	6	Adder cell*
Carry chain breaks	10	AND gate
Adding x^2 to p_1	28	2:1 MUX
Partial product overrides	106	2:1 MUX
Final computation adders	26	Adder Cell
Final product computation		
Booth encoding MUXes	13	2:1 MUX
Partial product MUXes	24	2:1 MUX
Multiplication by 5	32	2:1 MUX
Extra output MUX port	32	2:1 MUX*

Multiplication vs. Division Critical Path

- Critical paths similar length, but use the same cells in different order
- Problem for STA-based design flows

Two-Cycle Circuit: Bit Mapping

 Separate output port from the top of the multiplier array, used for both cycles

Two-Cycle Circuit: Compressor Tree

Division Estimation Circuit Synthesis

Synthesized Circuit	Logic Elements	f _{max} from STA
Wallace Tree Multiplier	2,172	80 MHz
Multiplier Tree Only	2,175	76 MHz
Division Estimation Only	1,310	82 MHz
One-cycle MUL/DIV	2,340 (+7.6%)	43 MHz (-41%)
Two-cycle MUL/DIV	2,345 (+7.8%)	71 MHz (-6.6%)

- Synthesized on MAX10 FPGA as a proxy for ASIC
- STA pessimistically estimates 41% frequency loss for one-cycle circuit

Division State Machine

 Self-contained system with just MCU datapath (gray) and added circuits for division (white)

Division State Machine

- RISC-V MCU datapath (two operands, one result)
- Added leading zero count to shifter
- Added two registers
- Added multiplier capabilities for division:
 - Division approximation
 - Integer FMA with shadow register for 3rd operand
 - Adding 2³² to operand A on a signed multiplication
 - Negating a multiplication
 - Right-shifting output by 1

Division State Machine Algorithm

Cycle	Description	Operation
1	Left-justify $D ightarrow D' \in [0.5, 1)$ in UQ0.32	$D' = D \ll CLZ(D)$
2	Estimate $X = 1/D$ in UQ1.31	$X = A_{1/x}(D')$
3	NR round 1: Get error in UQ0.32	$T = \operatorname{mulhi}(X, D') \gg 1$
4	NR round 1: Refine X	$X = \text{mulhi}[X, (2^{32} - T)]$
5	NR round 2: Get error	$T = \text{mulhi}(X, D') \gg 1$
6	NR round 2: Refine X	$X = \text{mulhi}[X, (2^{32} - T)]$
7	Calculate quotient	Q' = mulhi(N, X)
8	Shift quotient back	$Q = Q' \gg CLZ(D)$
9	Calculate remainder	R = N - DQ
10	Check remainder	$(R \ge D)?R = R - D$
11	Fix quotient (if needed)	$(R \ge D)?Q = Q + 1$

Division State Machine Algorithm

- Compute MOD before DIV
- 11 cycles for full computation of 32 bit integer division
 - 1 cycle preparation
 - 6 cycles core division algorithm
 - 2 cycles finalization
 - 2 cycles correction
- Preparation and finalization steps unique to integer ops
- Cycles 10-11 (correction) come from truncation in cycle 6, 11th cycle only when N is full width

Division State Machine: Early Termination

- Optional early termination for non-cryptographic division
- Uses leading zero count to upper-bound result MSB index

Case	Condition	Total Cycles
Divide by zero	D=0	3
Power of 2	D' = 0.5	3
Known zero result	MSB < 0	4
8-bit precision (skip NR)	$0 \le MSB < 8$	6-7
16-bit precision (1 NR rounds)	8 ≤ <i>MSB</i> < 16	8-9
Full precision (2 NR rounds)	$16 \leq MSB < 32$	10–11

Division State Machine Synthesis

Component	Size(LEs)
FMA with division estimation	2,491
Leading zero count	47
Power of 2 detection	13
Control state machine	56
Extra registers	66
Common datapath components	587

- 3,260 LEs total in MAX10 FPGA
 - 2,673 of MUL/DIV components vs. 2,172 for MUL
- ▶ 501 LEs added for fast division vs. no division (+18%)
- Synthesizes to f_{max} of MUL/DIV circuit (42 or 72 MHz)

Conclusions

- Microarchitecture for 32-bit integer division
- ▶ 11 cycle DIV and 10 cycle MOD with early termination
- Use quantized polynomial instead of lookup tables, combined with multiplier
- Combined MUL/DIV circuit is 8% larger than multiplier at 7% frequency cost
- Fast division for comparable increase in area to bit-at-a-time algorithms

