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Motivation

▶ Small MCUs often have single-cycle multiply, but slow
divide
▶ Non-restoring division or radix-2 digit recurrence
▶ Sometimes microcode or software

▶ Fast algorithms take area for lookup tables
▶ High-radix digit recurrence needs lookup table
▶ Iterative algorithms need an initial approximation

▶ Motivating application: cryptographic MCU for algorithms
that benefit from constant-time modulus, no FPU



Division by Iteration

▶ Start with an approximation and refine
▶ Quadratic convergence, 2 FMAs per round
▶ Large CPUs use multiplicative iteration for better

parallelism, but we have no parallelism

x0 = A1/x(D)
ϵn = 1− Dxn

xn+1 = xn + xnϵn = xn(2− Dxn)



Initial Approximations

▶ Target precision: 8 bits
▶ Typical approach: Faithful bipartite ROM tables

▶ Piecewise linear approximation
▶ 3.3 kbit for 8-bit precision + supporting HW

▶ Our approach: Quantized 4th order polynomial
approximation, integrated into existing multiplier circuits



Expression Form and Coefficients

1
x
≈ 7.15766− 20.1824x + 28.0257x2 − 19.17x3 + 5.17028x4

⇓ Factor: 3 → 2 multiplications
1
x
≈ 5.1703(1.9687− 2.6834x + x2)(0.70321− 1.02432x + x2)

⇓ Quantize coefficients
1
x
≈ 101b(c1 − 10.1011bx + x2)(c2 − 1.00001bx + x2)



Constants and Quantization

A1/x(x) = 101b (c1 − 10.1011bx + x2
13 bit

)︸ ︷︷ ︸
14 bit

(c2 − 1.00001bx + x2
13 bit

)︸ ︷︷ ︸
12 bit

▶ Co-select constants and bit widths for each term: Optimal
constants are not necessarily rounded unquantized values

▶ Brute force with 32b word, SAT/LP solver for 64b
▶ We set c1 and c2 to underestimate so DA1/x(D) < 1



Mapping to Hardware

A1/x(x) = 101b (c1 − 10.1011bx + x2)︸ ︷︷ ︸
p1

(c2 − 1.00001bx + x2)︸ ︷︷ ︸
p2

▶ 13× 13 multiply for x2

▶ 7-term addition for p1
▶ 5-term addition for p2
▶ 12× 14 multiply with post-add for 5p1p2



Fitting into a Multiplier

+

=
MUL result

▶ Booth code multiplier
▶ Vertical cuts: AND gates
▶ Horizontal cuts: multiplexing within compressor tree



Fitting into a Multiplier

x2
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Fitting into a Multiplier

x2
p1

p2

5p1p2

▶ Horizontal cuts at bits 7 and 10 - need a compressor tree
that fits



Modified Compressor Tree
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Comparison to Common Compressor Trees

▶ All options use
equivalent of 15 full
adder cells

▶ 2 extra logic levels
compared to
Wallace Tree

▶ Same depth as 4:2
compressor tree
with 4:2 standard
cells

Array Multiplier Wallace Tree

4:2 Compressor Tree Our Compressor Tree



Circuit Size Expansion for Division Estimation

▶ 275 2:1
MUXes

▶ 46 adder cells
▶ 10 AND gates
▶ Under 350

gates total

Count Element
Generation of x2
Booth encoding MUXes 14 2:1 MUX
Partial product MUXes 26 2:1 MUX
Carry out 14 Adder Cell
Generation of p1 and p2
New multiplier bits 6 Adder cell*
Carry chain breaks 10 AND gate
Adding x2 to p1 28 2:1 MUX
Partial product overrides 106 2:1 MUX
Final computation adders 26 Adder Cell
Final product computation
Booth encoding MUXes 13 2:1 MUX
Partial product MUXes 24 2:1 MUX
Multiplication by 5 32 2:1 MUX
Extra output MUX port 32 2:1 MUX*



Multiplication vs. Division Critical Path

▶ Critical paths similar length, but use the same cells in
different order

▶ Problem for STA-based design flows



Two-Cycle Circuit: Bit Mapping

x2
p1

p2

5p1p2

Cycle 1 Cycle 2

▶ Separate output port from the top of the multiplier array,
used for both cycles



Two-Cycle Circuit: Compressor Tree
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Division Estimation Circuit Synthesis

Synthesized Circuit Logic Elements fmax from STA
Wallace Tree Multiplier 2,172 80 MHz
Multiplier Tree Only 2,175 76 MHz
Division Estimation Only 1,310 82 MHz
One-cycle MUL/DIV 2,340 (+7.6%) 43 MHz (-41%)
Two-cycle MUL/DIV 2,345 (+7.8%) 71 MHz (-6.6%)

▶ Synthesized on MAX10 FPGA as a proxy for ASIC
▶ STA pessimistically estimates 41% frequency loss for

one-cycle circuit



Division State Machine
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▶ Self-contained system with just MCU datapath (gray) and
added circuits for division (white)



Division State Machine

▶ RISC-V MCU datapath (two operands, one result)
▶ Added leading zero count to shifter
▶ Added two registers
▶ Added multiplier capabilities for division:

▶ Division approximation
▶ Integer FMA with shadow register for 3rd operand
▶ Adding 232 to operand A on a signed multiplication
▶ Negating a multiplication
▶ Right-shifting output by 1



Division State Machine Algorithm
Cycle Description Operation

1 Left-justify D → D′ ∈ [0.5, 1) in UQ0.32 D′ = D ≪ CLZ(D)
2 Estimate X = 1/D in UQ1.31 X = A1/x(D′)
3 NR round 1: Get error in UQ0.32 T = mulhi(X,D′) ≫ 1
4 NR round 1: Refine X X = mulhi[X, (232 − T)]
5 NR round 2: Get error T = mulhi(X,D′) ≫ 1
6 NR round 2: Refine X X = mulhi[X, (232 − T)]
7 Calculate quotient Q′ = mulhi(N,X)
8 Shift quotient back Q = Q′ ≫ CLZ(D)
9 Calculate remainder R = N− DQ
10 Check remainder (R ≥ D)?R = R− D
11 Fix quotient (if needed) (R ≥ D)?Q = Q+ 1



Division State Machine Algorithm

▶ Compute MOD before DIV
▶ 11 cycles for full computation of 32 bit integer division

▶ 1 cycle preparation
▶ 6 cycles core division algorithm
▶ 2 cycles finalization
▶ 2 cycles correction

▶ Preparation and finalization steps unique to integer ops
▶ Cycles 10-11 (correction) come from truncation in cycle 6,

11th cycle only when N is full width



Division State Machine: Early Termination

▶ Optional early termination for non-cryptographic division
▶ Uses leading zero count to upper-bound result MSB index

Case Condition Total Cycles
Divide by zero D = 0 3
Power of 2 D′ = 0.5 3
Known zero result MSB < 0 4
8-bit precision (skip NR) 0 ≤ MSB < 8 6–7
16-bit precision (1 NR rounds) 8 ≤ MSB < 16 8–9
Full precision (2 NR rounds) 16 ≤ MSB < 32 10–11



Division State Machine Synthesis
Component Size(LEs)
FMA with division estimation 2,491
Leading zero count 47
Power of 2 detection 13
Control state machine 56
Extra registers 66
Common datapath components 587

▶ 3,260 LEs total in MAX10 FPGA
▶ 2,673 of MUL/DIV components vs. 2,172 for MUL

▶ 501 LEs added for fast division vs. no division (+18%)
▶ Synthesizes to fmax of MUL/DIV circuit (42 or 72 MHz)



Conclusions

▶ Microarchitecture for 32-bit integer division
▶ 11 cycle DIV and 10 cycle MOD with early termination
▶ Use quantized polynomial instead of lookup tables,

combined with multiplier
▶ Combined MUL/DIV circuit is 8% larger than multiplier at

7% frequency cost
▶ Fast division for comparable increase in area to

bit-at-a-time algorithms


