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The genesis of Formal for Arithmetic Circuits

And then in 1994, the focus shifted to 

arithmetic circuits …

Early Automated 

Proofs

Stanford 

Pascal Verifier

ACL2

Higher Order Logic,

Isabelle, PVS, Coq

1950s 1960s 1970s 2000

For many decades, the focus was on proving software, algorithms, axiomatic theories – using theorem provers
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Reasoning about Arithmetic – Fundamental Limitations  

Gödel's incompleteness theorems:

1. No consistent system of axioms whose theorems can be listed by an effective procedure is capable of proving 

all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always be 

statements about natural numbers that are true, but that are unprovable within the system. 

2. The system cannot demonstrate its own consistency.

What can we do?

- Focus on soundness, sacrificing completeness – 

 what we prove is true, but we cannot prove everything that is true

- Use soundness preserving abstractions – essentially attempt to prove stronger results 
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Evolution of Formal for Arithmetic

• Formal approaches to check equivalence between a known function and it’s hardware / software implementation

– Reduction to canonical forms for combinational functions

– SAT/SMT-based equivalence checking

– Sequential equivalence / Transactional equivalence

– Algebraic rewrites

BDDs for Boolean 

Functions

BMDs for 

Multipliers
Symbolic 

Trajectory 

Evaluation

Sequential 

Equivalence 

Checking

1980s 1990s 2000s

SAT 

and 

BMC

SMT

2010s

Algebraic 

Rewrites
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Datapath Validation Requires Specialized Formal Technology

• Formal property verification (FPV) is best suited for control 

logic verification

– Proving that specified properties hold true for the DUT 

given input constraints

• FPV is not efficient in verifying datapath

– Wide datapath operations lead to enormous formal 

search space and complexity

– Bounded proof is not good enough for precise math 

function requirements

• Formal equivalence checking is needed to ensure datapath 

implementation correctness

Control Logic

S1

S2

S4

S3

S1

S2
S3

Data Path

+ x I

Integer Units

…

Floating Point

FMUL

FMAC

FDIV

Formal Property Verification is not the best 

strategy for verifying datapath operations
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Datapath Validation Requires Transactional Equivalence Checking

• Datapath blocks often have C/C++ specifications 

– There is no notion of timing in the C/C++ models

• Transactional Equivalence means that RTL and the C/C++ model produce 

the same outputs, given equal inputs

• Transactional Equivalence is different from:

– Sequential equivalence 

– Often used for RTL/RTL comparison after clock gating/retiming

– Combinational equivalence 

– Often used for RTL/gate comparison after logic synthesis

Transactional Equivalence

Assume 

Equal 

Inputs

Compare 

Outputs

Sequential Equivalence

Assume 

Equal 

Inputs

& 

Start 

States

Compare 

Outputs

@

Every 

Cycle

Combinational Equivalence

Compare 

Boolean 

Fan-in 

Logic

Compare 

Matched 

Point
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VC Formal DPV: Synopsys Datapath Validation Solution

Shared Compilation, Formal Engines, Debug Interface with Other VC Formal Apps

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC
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VC Formal DPV: Benefits & Features

D P V  B E N E F I T S

• Exhaustively verify datapath 

design refinements

• Prove consistency of 

independently developed 

reference & implementation 

models

• Achieve datapath signoff 

without any testbench

D P V  F E AT U R E S

• Integrated mature HECTOR 

technology

• Supports ADD, SUB, MULT, 

DIV, SQRT operators

• Applicable to CPU, GPU, DSP, 

AI/ML (CNN) and other data 

processing designs

Impl. Model

C/C++/RTL

VC Formal DPV
Transactional Equivalence Checking

Ref. Model

C/C++/RTL

Debug 

Counter-Example
Datapath

Signoff

Assume 

Equal 

Inputs

Compare 

Outputs
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VC Formal DPV Application: Verification of AI/ML Designs 

DesignWare ARC EV6x Example

Verified with 

VC Formal DPV

Verified with 

VC Formal DPV
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The Future of Arithmetic and Formal

• Most industrial safety standards recommend the use of formal verification for safety critical designs

– Industrial process automation (IEC 61508), Automotive (ISO 26262), Railway (EN 50128), Avionics (DO-178C/ DO-133), 

Nuclear (IEC 60880), Space (ECSS-Q-ST-80C)

– These systems are of diverse types and of diverse complexities

• We wish to expand the universe of formal verification and its deployment

• Towards that direction

– We need more complex arithmetic to model systems and “formal for such arithmetic”

– The methods for formal verification must look beyond SAT/SMT to prove correctness – essentially a new “arithmetic 

for formal”

– In reality, these two directions complement each other, and the challenges overlap

Synopsys Confidential Information
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Complexity of Arithmetic for Formal Systems

Digital Circuits

 - Can be bit blasted 

 - Finite states

Programs

 - Real variables

 - Predicate abstraction

 - Discrete

Analog Circuits

 - Real vars

 - Continuous

 - Dense time

Cyber-Physical 

Systems

 - Discrete Controller 

 - Continuous Plant

ML-based Systems

 - Learned model

 - Complex activations funcs
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Challenge 1: Handling continuous time

• Existing EDA tools on formal verification use discrete time. This allows us to:

– Define the semantics of next time and count time in terms of number of cycles

– For example, the property: always (@posedge clk) a |-> ##[3:5} b requires b to hold 3 to 5 cycles after a.

– We can model behaviors in terms of discrete state sequences (runs of Büchi automata)

• On the other hand, assertions over dense time allow:

– Assertions to hold continuously over an interval of time

– Failures can also happen over intervals of time

– There is no notion of next time

• We need a different type of arithmetic to reason about dense time

Synopsys Confidential Information
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AMS Assertions 

• Motivated by increasing analog content in AMS SOCs

• Key attributes of AMS assertions

– Dense real time

– Predicates over Real Valued Variables (PORVs)

(Vin >= 5) |-> ##[2.3 : 8.6] (Vout >= 3.2) 

• (Vin >= 5) and (Vout >= 3.2) are two PORVs.

• PORVs are true over continuous intervals of time

Waveform of  Vin and Vout vs Time

Truth Intervals of the PORVs

Vin

Vout
5

3.2

Vin >= 5

Vout >= 3.2
t1

t2

• Instrumenting AMS Assertion Verification on Commercial Platforms, Rajdeep Mukhopadhyay, S K Panda, Pallab Dasgupta, John Gough, ACM Trans. on 
Design Automation of Electronic Systems, 14 (2), 2009. 

• Feature Indented Assertions for Analog and Mixed-Signal Validation. Antara Ain, Antonio A Bruto Da Costa, Pallab Dasgupta, IEEE Trans. on Computer-Aided 
Design of Integrated Circuits and Systems, 35(11), 2016.
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Interval Arithmetic

• Property P: (Vin >= 5) |-> ##[a : b] (Vout >= 3.2) 

• Let T(Vin >= 5) = [x : y] and T(Vout >= 3.2) = [m : n] be two 

truth intervals

• Then the following is one of the truth intervals for P:

T(P) = [x : y]  ( [m : n] ⊝ [a : b] ) 

       

       where ⊝ denotes the Minkowski difference, that is:

[m : n] ⊝ [a : b] = [m − b : n − a]

Waveform of  Vin and Vout vs Time

Vin

Vout
5

3.2

Vin >= 5

Vout >= 3.2
x

m n

m − b n − a 
##[a : b] Vout >= 3.2

y

Failure intervals of P
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AMS Assertions with Local Variables

15

• Local variables significantly add to the expressive power of SystemVerilog Assertions. Very powerful in AMS-SVA as well

• If Vin rises from 1V to 5V in less than 2.5s then Vout must rise by at least 3.6V.

@+(Vin>=1), v1=Vout  ##[0:2.5] @+(Vin>=5),v2=Vout  |-> (v2 - v1 > 3.6) 

• In AMS-SVA, the local variables are unbounded reals

• This is very powerful – can model recursive arithmetic computations

• Satisfiability of AMS-SVA is computationally undecidable (recall Godel’s Theorem)

• Reduction from 2-counter machines

• Synchronizing AMS Assertions with AMS Simulation: From Theory to Practice, Subhankar Mukherjee, Pallab Dasgupta, Siddhartha Mukhopadhyay, Scott 
Little, John Havlicek, Srikanth Chandrasekaran, ACM Trans. on Design Automation of Electronic Systems, 17(4), 2012. 

• Interpreting Local Variables in AMS Assertions during Simulation, Antara Ain, Pallab Dasgupta, IEEE Trans. on Computer-Aided Design of Integrated Circuits 
and Systems, 38(5), 2019.
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States → Discrete State Sets → Regions

A simulation run: State Traversal

Synopsys Confidential Information

Symbolic traversal: Traversal through Discrete State Sets

Set of states 

(BDD/SAT)
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Challenge 2: Symbolic Reachability in Dense Spaces

• Each state set is uncountable – cannot be represented by SAT / BDD

• Hence the notion of regions

Synopsys Confidential Information

R1

R2

X

Y X=1

Y=2

Y=1

X+Y = 5

State sets are defined by conjunction of constraints:

• Region R1 = (0 < X < 1) && (0 < Y < 1)

• Region R2 = (X > 1) && (Y > 2) && (X+Y < 5)

One may conceive a region graph, where each vertex is a region

• Edges between adjacent regions

• Here R1 and R2 are not adjacent regions, hence no edge between them 
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Regions in Analog / Mixed-Signal

• Regions boundaries are predicates specified using SV real net types in digital 

AMS models, or VAMS wreal in VAMS models / spice circuits

R1

R2

Modes: Pre-charge, Constant Current, Constant Voltage, Maintenance

Mode boundaries are defined by predicates

Charging Characteristics 

(Li-ion battery charger)
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The notion of hybrid automata

Synopsys Confidential Information
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The notion of hybrid automata

Synopsys Confidential Information

Continuous dynamics 

in pre-charge mode

Continuous dynamics in 

constant current mode

Transition guard

Discrete transition from 

pre-charge to constant 

current mode
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Reachability and Fixpoint Computations

• Polyhedral approximations (convexity assumptions)

Synopsys Confidential Information

I

Initial states

time

t

Z1

t + 

Z2

t + 2

Actual set of states 

reachable in 2 time

Polyhedron overapproximates the 

set of states reachable in 2 time

• Flow-pipe construction applies dynamics on 

the corner points of the polyhedron

• Tradeoff between shape accuracy and the 

degree of the polyhedron

t + k

Zk-1 Zk
=

Fixpoint reached
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Flow-pipes for Hybrid Systems 

Initial set

𝑅𝑒𝑎𝑐ℎ Δ

𝑅𝑒𝑎𝑐ℎ [0, Δ]

𝑅𝑒𝑎𝑐ℎ 2Δ

𝑅𝑒𝑎𝑐ℎ [Δ, 2Δ]

Transition Guard Condition 

for Mode Change 

Initial Set for 

“Green” mode

Continue with 

“blue” mode 

dynamics.

Calculate up to time T

1

2
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Flow-pipe Construction: Challenges

1 Representation: sets of states.

2 Intersection and Set Difference. 

3

“Time Elapse”: ODE Integration.

4
Union: aggregate multiple

segments into one.

5 Image under nonlinear 

transformations.

6

Projection onto a subset of dimensions

Complexity reduction.

Containment checking.
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Set Representations

Intervals/

Hyper-rectangles
Zonotopes

  [Girard et al’05]

Ellipsoids

  [Kurzhanskiy+Varaiya]

Convex Polyhedra

  [Sank. et al’09, Frehse et al.’06]

𝜆𝑐. max 𝑐. 𝑥 st. 𝑥 ∈ 𝑆 Support Functions

  [Frehse et al.’09]
Star Sets

  [Bak et al’16]
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Formal Modeling of Cyber-Physical Systems

Design Flow:

 Continuous/Hybrid dynamics → Discrete (sampled) dynamics → Discrete Control Law → Control software

Synopsys Confidential Information

ECU

(controller)

ECU 

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦
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Mathematical Representation of Dynamical Systems

Standard practice in control design:

 Continuous/Hybrid dynamics → Discrete (sampled) dynamics

Synopsys Confidential Information

ECU

(controller)

ECU 

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

𝑥[𝑘 + 1] = Φ𝑥[𝑘] + Γ𝑢[𝑘]
𝑦[𝑘] = 𝐶𝑥[𝑘]

Φ = 𝑒𝐴ℎ = 𝐼 + 𝐴ℎ +
𝐴2ℎ2

2!
+

𝐴3ℎ3

3!
+  …

Γ = 𝐶𝑥[𝑘] න
0

ℎ

𝑒𝐴𝑠𝐵𝑑𝑠

where

select a sampling rate h
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Mathematical Representation of Dynamical Systems

Synopsys Confidential Information

ECU

(controller)

ECU 

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

Plant Dynamics:

𝑥𝑝[𝑡 + 1] = 𝐴𝑝𝑥𝑝[𝑡] + 𝐵𝑝𝑢[𝑡]

𝑦[𝑡] = 𝐶𝑝𝑥𝑝[𝑡]

Controller Dynamics:

𝑥𝑐[𝑡 + 1] = 𝐴𝑐𝑥𝑐[𝑡] + 𝐵𝑐𝑦[𝑡]

𝑢[𝑡] = 𝐶𝑐𝑥𝑐[𝑡]
Closed Loop (Linear) Dynamics:

𝑥 𝑡 + 1 =
𝐴𝑝 𝐵𝑝𝐶𝑐

𝐵𝑐𝐶𝑝 𝐴𝑐
𝑥 𝑡

or,  𝑥[𝑡 + 1] = 𝐴𝑥[𝑡]

• Most real-world systems are non-linear, and can be approximated by piecewise linear dynamics
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Mathematical Representation of Dynamical Systems

Synopsys Confidential Information

ECU

(controller)

ECU 

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

Closed Loop (Linear) Dynamics:

𝑥[𝑡 + 1] = 𝐴𝑥[𝑡]

Most real world systems are non-linear. May be approximated by piecewise linear dynamics

x[ t +1 ] = A1 x[ t ]

x[ t +1 ] = A2 x[ t ]

x[ t +1 ] = A3 x[ t ]
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Stability as a Safety Property

• Given a set of linear dynamics, A1, …, An, the following represents a switched execution of k cycles:

𝒙 𝒕 + 𝒌 = (𝑨𝝈𝒌
… 𝑨𝝈𝟐

𝑨𝝈𝟏
)𝒙[𝒕] where j  {1, …, n}

• What can we infer from k length sequences?

• Exponential Stability:

– For 0 <  < 1 and k ∈ N, consider the language of all schedules such that any interval of length k is contracting by at 

least 

 ExpStab(k, ) = { = 1 … k , such that ||𝑨𝝈𝒌
… 𝑨𝝈𝟐

𝑨𝝈𝟏
|| <  for every k ∈ N}

– The above language is omega regular and can be accepted by a Büchi automaton

– Therefore we can formally prove stable execution patterns of switching in a controller

• Likewise we can formally prove control performance, directional growth, admissible loop skipping, etc.

• These guarantees have strong inductive underpinnings

Synopsys Confidential Information
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Challenge 3: Intelligent Cyber-Physical Systems

• Neural networks model highly non-linear functions

• Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks

– Only neural networks using the RELU activation function can be used (RELU is piecewise linear)

• Going forward, we need the ability to handle more complex activation functions – sigmoid, tanh, etc. 

Synopsys Confidential Information

Adaptive / Self-Learning Control

(Deep Neural Network)

ECU 

(sensor)

actuator

𝑢

Ԧ𝑦
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Building Trust in RL-based controllers

Model of the 

Plant

DQN Controller

Measurements x

Control inputs u

Training

SAFE LEARNING

Constrain the Markov decision process 

using safety properties such that the 

agent only learns to visit safe states.

Real World Plant

S
af

et
y 

L
ay

er

SHIELDS

A safety layer that analytically solves an 

action correction formulation at each state.

Trained Model

Non Interpretable hence difficult to verify

SAFETY VERIFICATION

DNN with L layers and N neurons per layer can 

be represented as a hybrid system with L + 1 

modes and 2N states.

Analyze the hybrid models with tools like Flow* 

to answer reachability question.

Inspired by CEGAR:
Counterexample Guided RL Policy Refinement Using Bayesian Optimization, Briti Gangopadhyay, Pallab Dasgupta, Advances in Neural Information Processing 
Systems (NeurIPS). 2021.
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Towards Flow*: Taylor Models

y = sin 𝑡 , 𝑡 ∈ [−1.2, 1.2]

t

y

𝑦 ∈ 𝑡 + [−0.3, 0.3]

𝑦 ∈ 𝑡 −
𝑡3

6
+ [−0.03, 0.03]

𝑦 ∈ 𝑡 −
𝑡3

6
+

𝑡5

120
+ [−0.0007, 0.0007]

𝑦 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥1, … , 𝑥𝑛 ∈ 𝑋0

𝑦 ∈ 𝑝 𝑥1, … , 𝑥𝑛 + [𝑙, 𝑢]

Polynomial of 

degree d

Error 

Interval

Slide courtesy: Prof. Sriram Sankaranarayanan, UC Boulder
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Taylor Model Calculus

𝑓 𝑥, 𝑦, 𝑡 = 𝑥 − 2 sin 𝑥 + 𝑦 𝑡2 − 1.5 𝑒 0.5 𝑥2−𝑡2−0.2

𝑥 ∈ −0.5, 0.5 , 𝑦 ∈ −1.1, −0.8 , 𝑧 ∈ [ 0.2, 1.4]

Smooth function

Bounded Domain

𝑓 ∈  0.9 𝑡2𝑥2 𝑦3 + ⋯ + 0.15 + [−0.05, 0.05] Taylor model approximation

Taylor model

approximation

of functions

𝑋0

𝑥(0)
𝑥(𝑡)

𝑥 𝑡 = 𝜑(𝑥 0 , 𝑡)

Idea: Taylor model for 𝝋(𝒙(𝟎), 𝒕) = 𝒑(𝒙(𝟎), 𝒕) + 𝑰𝒏𝒕𝒗𝒍.

Slide courtesy: Prof. Sriram Sankaranarayanan, UC Boulder
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The Flow* Tool  

• Case studies

– Descent guidance program for a UAV autolander [Zhan et al.]

– Verifying UAV controllers [ Ethan Jackson et al. Microsoft Research]

– Verification of automotive controllers [ Xiaoqing Jin et al. Toyota Motors]

– Analysis of medical device control algorithms [Dutta et al.’2017]

– Data-driven control verification [Chen+Dutta+Sank.’2019]

– Interval-based Bayesian Inference [Yi+Sank.’2019]

Synopsys Confidential Information

Work of Prof Erika Abraham, RWTH Aachen,

Prof Sriram Sankaranarayanan and Xin Chen, UC Boulder

http://www.flowstar.org
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Concluding Remarks

• Most industrial safety standards (automotive, avionics, railways, industrial automation, space, nuclear) recommend the 

use of formal verification for safety critical components

– These come under various computational structures – models, software, hardware, English specifications

• The complexity of the arithmetic is growing, and we need to invest in new types of methodologies, looking beyond 

SAT/SMT

• We have a deep innovation pipeline in VC Formal, and we are continuously building new products and applications 

soon that we can help the industry solve the hard problems of the future

Together, we will ensure a safe and reliable world !! 

Thanks for your attention !!
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