
“Formal for Arithmetic” and

“Arithmetic for Formal”

Dr. Pallab Dasgupta
Head of Research and Innovation, Formal Verification

ARITH 2023

© 2023 Synopsys, Inc. 2

The genesis of Formal for Arithmetic Circuits

And then in 1994, the focus shifted to

arithmetic circuits …

Early Automated

Proofs

Stanford

Pascal Verifier

ACL2

Higher Order Logic,

Isabelle, PVS, Coq

1950s 1960s 1970s 2000

For many decades, the focus was on proving software, algorithms, axiomatic theories – using theorem provers

© 2023 Synopsys, Inc. 3

Reasoning about Arithmetic – Fundamental Limitations

Gödel's incompleteness theorems:

1. No consistent system of axioms whose theorems can be listed by an effective procedure is capable of proving

all truths about the arithmetic of natural numbers. For any such consistent formal system, there will always be

statements about natural numbers that are true, but that are unprovable within the system.

2. The system cannot demonstrate its own consistency.

What can we do?

- Focus on soundness, sacrificing completeness –

 what we prove is true, but we cannot prove everything that is true

- Use soundness preserving abstractions – essentially attempt to prove stronger results

© 2023 Synopsys, Inc. 4

Evolution of Formal for Arithmetic

• Formal approaches to check equivalence between a known function and it’s hardware / software implementation

– Reduction to canonical forms for combinational functions

– SAT/SMT-based equivalence checking

– Sequential equivalence / Transactional equivalence

– Algebraic rewrites

BDDs for Boolean

Functions

BMDs for

Multipliers
Symbolic

Trajectory

Evaluation

Sequential

Equivalence

Checking

1980s 1990s 2000s

SAT

and

BMC

SMT

2010s

Algebraic

Rewrites

© 2023 Synopsys, Inc. 5

Datapath Validation Requires Specialized Formal Technology

• Formal property verification (FPV) is best suited for control

logic verification

– Proving that specified properties hold true for the DUT

given input constraints

• FPV is not efficient in verifying datapath

– Wide datapath operations lead to enormous formal

search space and complexity

– Bounded proof is not good enough for precise math

function requirements

• Formal equivalence checking is needed to ensure datapath

implementation correctness

Control Logic

S1

S2

S4

S3

S1

S2
S3

Data Path

+ x I

Integer Units

…

Floating Point

FMUL

FMAC

FDIV

Formal Property Verification is not the best

strategy for verifying datapath operations

© 2023 Synopsys, Inc. 6

Datapath Validation Requires Transactional Equivalence Checking

• Datapath blocks often have C/C++ specifications

– There is no notion of timing in the C/C++ models

• Transactional Equivalence means that RTL and the C/C++ model produce

the same outputs, given equal inputs

• Transactional Equivalence is different from:

– Sequential equivalence

– Often used for RTL/RTL comparison after clock gating/retiming

– Combinational equivalence

– Often used for RTL/gate comparison after logic synthesis

Transactional Equivalence

Assume

Equal

Inputs

Compare

Outputs

Sequential Equivalence

Assume

Equal

Inputs

&

Start

States

Compare

Outputs

@

Every

Cycle

Combinational Equivalence

Compare

Boolean

Fan-in

Logic

Compare

Matched

Point

© 2023 Synopsys, Inc. 7

VC Formal DPV: Synopsys Datapath Validation Solution

Shared Compilation, Formal Engines, Debug Interface with Other VC Formal Apps

High Performance: ML powered proprietary engines for hard proofs, liveness, and deep bug-hunting

High Confidence Formal Signoff: Native Certitude integration for fast and high-quality Formal Signoff

Block/IP Subsystem SoC

© 2023 Synopsys, Inc. 8

VC Formal DPV: Benefits & Features

D P V B E N E F I T S

• Exhaustively verify datapath

design refinements

• Prove consistency of

independently developed

reference & implementation

models

• Achieve datapath signoff

without any testbench

D P V F E AT U R E S

• Integrated mature HECTOR

technology

• Supports ADD, SUB, MULT,

DIV, SQRT operators

• Applicable to CPU, GPU, DSP,

AI/ML (CNN) and other data

processing designs

Impl. Model

C/C++/RTL

VC Formal DPV
Transactional Equivalence Checking

Ref. Model

C/C++/RTL

Debug

Counter-Example
Datapath

Signoff

Assume

Equal

Inputs

Compare

Outputs

© 2023 Synopsys, Inc. 9

VC Formal DPV Application: Verification of AI/ML Designs

DesignWare ARC EV6x Example

Verified with

VC Formal DPV

Verified with

VC Formal DPV

© 2023 Synopsys, Inc. 10

The Future of Arithmetic and Formal

• Most industrial safety standards recommend the use of formal verification for safety critical designs

– Industrial process automation (IEC 61508), Automotive (ISO 26262), Railway (EN 50128), Avionics (DO-178C/ DO-133),

Nuclear (IEC 60880), Space (ECSS-Q-ST-80C)

– These systems are of diverse types and of diverse complexities

• We wish to expand the universe of formal verification and its deployment

• Towards that direction

– We need more complex arithmetic to model systems and “formal for such arithmetic”

– The methods for formal verification must look beyond SAT/SMT to prove correctness – essentially a new “arithmetic

for formal”

– In reality, these two directions complement each other, and the challenges overlap

Synopsys Confidential Information

© 2023 Synopsys, Inc. 11

Complexity of Arithmetic for Formal Systems

Digital Circuits

 - Can be bit blasted

 - Finite states

Programs

 - Real variables

 - Predicate abstraction

 - Discrete

Analog Circuits

 - Real vars

 - Continuous

 - Dense time

Cyber-Physical

Systems

 - Discrete Controller

 - Continuous Plant

ML-based Systems

 - Learned model

 - Complex activations funcs

© 2023 Synopsys, Inc. 12

Challenge 1: Handling continuous time

• Existing EDA tools on formal verification use discrete time. This allows us to:

– Define the semantics of next time and count time in terms of number of cycles

– For example, the property: always (@posedge clk) a |-> ##[3:5} b requires b to hold 3 to 5 cycles after a.

– We can model behaviors in terms of discrete state sequences (runs of Büchi automata)

• On the other hand, assertions over dense time allow:

– Assertions to hold continuously over an interval of time

– Failures can also happen over intervals of time

– There is no notion of next time

• We need a different type of arithmetic to reason about dense time

Synopsys Confidential Information

© 2023 Synopsys, Inc. 13

AMS Assertions

• Motivated by increasing analog content in AMS SOCs

• Key attributes of AMS assertions

– Dense real time

– Predicates over Real Valued Variables (PORVs)

(Vin >= 5) |-> ##[2.3 : 8.6] (Vout >= 3.2)

• (Vin >= 5) and (Vout >= 3.2) are two PORVs.

• PORVs are true over continuous intervals of time

Waveform of Vin and Vout vs Time

Truth Intervals of the PORVs

Vin

Vout
5

3.2

Vin >= 5

Vout >= 3.2
t1

t2

• Instrumenting AMS Assertion Verification on Commercial Platforms, Rajdeep Mukhopadhyay, S K Panda, Pallab Dasgupta, John Gough, ACM Trans. on
Design Automation of Electronic Systems, 14 (2), 2009.

• Feature Indented Assertions for Analog and Mixed-Signal Validation. Antara Ain, Antonio A Bruto Da Costa, Pallab Dasgupta, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, 35(11), 2016.

© 2023 Synopsys, Inc. 14

Interval Arithmetic

• Property P: (Vin >= 5) |-> ##[a : b] (Vout >= 3.2)

• Let T(Vin >= 5) = [x : y] and T(Vout >= 3.2) = [m : n] be two

truth intervals

• Then the following is one of the truth intervals for P:

T(P) = [x : y]  ([m : n] ⊝ [a : b])

 where ⊝ denotes the Minkowski difference, that is:

[m : n] ⊝ [a : b] = [m − b : n − a]

Waveform of Vin and Vout vs Time

Vin

Vout
5

3.2

Vin >= 5

Vout >= 3.2
x

m n

m − b n − a
##[a : b] Vout >= 3.2

y

Failure intervals of P

© 2023 Synopsys, Inc. 15

AMS Assertions with Local Variables

15

• Local variables significantly add to the expressive power of SystemVerilog Assertions. Very powerful in AMS-SVA as well

• If Vin rises from 1V to 5V in less than 2.5s then Vout must rise by at least 3.6V.

@+(Vin>=1), v1=Vout ##[0:2.5] @+(Vin>=5),v2=Vout |-> (v2 - v1 > 3.6)

• In AMS-SVA, the local variables are unbounded reals

• This is very powerful – can model recursive arithmetic computations

• Satisfiability of AMS-SVA is computationally undecidable (recall Godel’s Theorem)

• Reduction from 2-counter machines

• Synchronizing AMS Assertions with AMS Simulation: From Theory to Practice, Subhankar Mukherjee, Pallab Dasgupta, Siddhartha Mukhopadhyay, Scott
Little, John Havlicek, Srikanth Chandrasekaran, ACM Trans. on Design Automation of Electronic Systems, 17(4), 2012.

• Interpreting Local Variables in AMS Assertions during Simulation, Antara Ain, Pallab Dasgupta, IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 38(5), 2019.

© 2023 Synopsys, Inc. 16

States → Discrete State Sets → Regions

A simulation run: State Traversal

Synopsys Confidential Information

Symbolic traversal: Traversal through Discrete State Sets

Set of states

(BDD/SAT)

© 2023 Synopsys, Inc. 17

Challenge 2: Symbolic Reachability in Dense Spaces

• Each state set is uncountable – cannot be represented by SAT / BDD

• Hence the notion of regions

Synopsys Confidential Information

R1

R2

X

Y X=1

Y=2

Y=1

X+Y = 5

State sets are defined by conjunction of constraints:

• Region R1 = (0 < X < 1) && (0 < Y < 1)

• Region R2 = (X > 1) && (Y > 2) && (X+Y < 5)

One may conceive a region graph, where each vertex is a region

• Edges between adjacent regions

• Here R1 and R2 are not adjacent regions, hence no edge between them

© 2023 Synopsys, Inc. 18

Regions in Analog / Mixed-Signal

• Regions boundaries are predicates specified using SV real net types in digital

AMS models, or VAMS wreal in VAMS models / spice circuits

R1

R2

Modes: Pre-charge, Constant Current, Constant Voltage, Maintenance

Mode boundaries are defined by predicates

Charging Characteristics

(Li-ion battery charger)

© 2023 Synopsys, Inc. 19

The notion of hybrid automata

Synopsys Confidential Information

© 2023 Synopsys, Inc. 20

The notion of hybrid automata

Synopsys Confidential Information

Continuous dynamics

in pre-charge mode

Continuous dynamics in

constant current mode

Transition guard

Discrete transition from

pre-charge to constant

current mode

© 2023 Synopsys, Inc. 21

Reachability and Fixpoint Computations

• Polyhedral approximations (convexity assumptions)

Synopsys Confidential Information

I

Initial states

time

t

Z1

t + 

Z2

t + 2

Actual set of states

reachable in 2 time

Polyhedron overapproximates the

set of states reachable in 2 time

• Flow-pipe construction applies dynamics on

the corner points of the polyhedron

• Tradeoff between shape accuracy and the

degree of the polyhedron

t + k

Zk-1 Zk
=

Fixpoint reached

© 2023 Synopsys, Inc. 22

Flow-pipes for Hybrid Systems

Initial set

𝑅𝑒𝑎𝑐ℎ Δ

𝑅𝑒𝑎𝑐ℎ [0, Δ]

𝑅𝑒𝑎𝑐ℎ 2Δ

𝑅𝑒𝑎𝑐ℎ [Δ, 2Δ]

Transition Guard Condition

for Mode Change

Initial Set for

“Green” mode

Continue with

“blue” mode

dynamics.

Calculate up to time T

1

2

© 2023 Synopsys, Inc. 23

Flow-pipe Construction: Challenges

1 Representation: sets of states.

2 Intersection and Set Difference.

3

“Time Elapse”: ODE Integration.

4
Union: aggregate multiple

segments into one.

5 Image under nonlinear

transformations.

6

Projection onto a subset of dimensions

Complexity reduction.

Containment checking.

© 2023 Synopsys, Inc. 24

Set Representations

Intervals/

Hyper-rectangles
Zonotopes

 [Girard et al’05]

Ellipsoids

 [Kurzhanskiy+Varaiya]

Convex Polyhedra

 [Sank. et al’09, Frehse et al.’06]

𝜆𝑐. max 𝑐. 𝑥 st. 𝑥 ∈ 𝑆 Support Functions

 [Frehse et al.’09]
Star Sets

 [Bak et al’16]

© 2023 Synopsys, Inc. 25

Formal Modeling of Cyber-Physical Systems

Design Flow:

 Continuous/Hybrid dynamics → Discrete (sampled) dynamics → Discrete Control Law → Control software

Synopsys Confidential Information

ECU

(controller)

ECU

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

© 2023 Synopsys, Inc. 26

Mathematical Representation of Dynamical Systems

Standard practice in control design:

 Continuous/Hybrid dynamics → Discrete (sampled) dynamics

Synopsys Confidential Information

ECU

(controller)

ECU

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

ሶ𝑥 = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥

𝑥[𝑘 + 1] = Φ𝑥[𝑘] + Γ𝑢[𝑘]
𝑦[𝑘] = 𝐶𝑥[𝑘]

Φ = 𝑒𝐴ℎ = 𝐼 + 𝐴ℎ +
𝐴2ℎ2

2!
+

𝐴3ℎ3

3!
+ …

Γ = 𝐶𝑥[𝑘] න
0

ℎ

𝑒𝐴𝑠𝐵𝑑𝑠

where

select a sampling rate h

© 2023 Synopsys, Inc. 27

Mathematical Representation of Dynamical Systems

Synopsys Confidential Information

ECU

(controller)

ECU

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

Plant Dynamics:

𝑥𝑝[𝑡 + 1] = 𝐴𝑝𝑥𝑝[𝑡] + 𝐵𝑝𝑢[𝑡]

𝑦[𝑡] = 𝐶𝑝𝑥𝑝[𝑡]

Controller Dynamics:

𝑥𝑐[𝑡 + 1] = 𝐴𝑐𝑥𝑐[𝑡] + 𝐵𝑐𝑦[𝑡]

𝑢[𝑡] = 𝐶𝑐𝑥𝑐[𝑡]
Closed Loop (Linear) Dynamics:

𝑥 𝑡 + 1 =
𝐴𝑝 𝐵𝑝𝐶𝑐

𝐵𝑐𝐶𝑝 𝐴𝑐
𝑥 𝑡

or, 𝑥[𝑡 + 1] = 𝐴𝑥[𝑡]

• Most real-world systems are non-linear, and can be approximated by piecewise linear dynamics

© 2023 Synopsys, Inc. 28

Mathematical Representation of Dynamical Systems

Synopsys Confidential Information

ECU

(controller)

ECU

(sensor)

actuator

Controller

(software)

Plant

(the object being controlled)

𝑢

Ԧ𝑦

Closed Loop (Linear) Dynamics:

𝑥[𝑡 + 1] = 𝐴𝑥[𝑡]

Most real world systems are non-linear. May be approximated by piecewise linear dynamics

x[t +1] = A1 x[t]

x[t +1] = A2 x[t]

x[t +1] = A3 x[t]

© 2023 Synopsys, Inc. 29

Stability as a Safety Property

• Given a set of linear dynamics, A1, …, An, the following represents a switched execution of k cycles:

𝒙 𝒕 + 𝒌 = (𝑨𝝈𝒌
… 𝑨𝝈𝟐

𝑨𝝈𝟏
)𝒙[𝒕] where j  {1, …, n}

• What can we infer from k length sequences?

• Exponential Stability:

– For 0 <  < 1 and k ∈ N, consider the language of all schedules such that any interval of length k is contracting by at

least 

 ExpStab(k, ) = { = 1 … k , such that ||𝑨𝝈𝒌
… 𝑨𝝈𝟐

𝑨𝝈𝟏
|| <  for every k ∈ N}

– The above language is omega regular and can be accepted by a Büchi automaton

– Therefore we can formally prove stable execution patterns of switching in a controller

• Likewise we can formally prove control performance, directional growth, admissible loop skipping, etc.

• These guarantees have strong inductive underpinnings

Synopsys Confidential Information

© 2023 Synopsys, Inc. 30

Challenge 3: Intelligent Cyber-Physical Systems

• Neural networks model highly non-linear functions

• Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks

– Only neural networks using the RELU activation function can be used (RELU is piecewise linear)

• Going forward, we need the ability to handle more complex activation functions – sigmoid, tanh, etc.

Synopsys Confidential Information

Adaptive / Self-Learning Control

(Deep Neural Network)

ECU

(sensor)

actuator

𝑢

Ԧ𝑦

© 2023 Synopsys, Inc. 31

Building Trust in RL-based controllers

Model of the

Plant

DQN Controller

Measurements x

Control inputs u

Training

SAFE LEARNING

Constrain the Markov decision process

using safety properties such that the

agent only learns to visit safe states.

Real World Plant

S
af

et
y

L
ay

er

SHIELDS

A safety layer that analytically solves an

action correction formulation at each state.

Trained Model

Non Interpretable hence difficult to verify

SAFETY VERIFICATION

DNN with L layers and N neurons per layer can

be represented as a hybrid system with L + 1

modes and 2N states.

Analyze the hybrid models with tools like Flow*

to answer reachability question.

Inspired by CEGAR:
Counterexample Guided RL Policy Refinement Using Bayesian Optimization, Briti Gangopadhyay, Pallab Dasgupta, Advances in Neural Information Processing
Systems (NeurIPS). 2021.

© 2023 Synopsys, Inc. 32

Towards Flow*: Taylor Models

y = sin 𝑡 , 𝑡 ∈ [−1.2, 1.2]

t

y

𝑦 ∈ 𝑡 + [−0.3, 0.3]

𝑦 ∈ 𝑡 −
𝑡3

6
+ [−0.03, 0.03]

𝑦 ∈ 𝑡 −
𝑡3

6
+

𝑡5

120
+ [−0.0007, 0.0007]

𝑦 = 𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 , 𝑥1, … , 𝑥𝑛 ∈ 𝑋0

𝑦 ∈ 𝑝 𝑥1, … , 𝑥𝑛 + [𝑙, 𝑢]

Polynomial of

degree d

Error

Interval

Slide courtesy: Prof. Sriram Sankaranarayanan, UC Boulder

© 2023 Synopsys, Inc. 33

Taylor Model Calculus

𝑓 𝑥, 𝑦, 𝑡 = 𝑥 − 2 sin 𝑥 + 𝑦 𝑡2 − 1.5 𝑒 0.5 𝑥2−𝑡2−0.2

𝑥 ∈ −0.5, 0.5 , 𝑦 ∈ −1.1, −0.8 , 𝑧 ∈ [0.2, 1.4]

Smooth function

Bounded Domain

𝑓 ∈ 0.9 𝑡2𝑥2 𝑦3 + ⋯ + 0.15 + [−0.05, 0.05] Taylor model approximation

Taylor model

approximation

of functions

𝑋0

𝑥(0)
𝑥(𝑡)

𝑥 𝑡 = 𝜑(𝑥 0 , 𝑡)

Idea: Taylor model for 𝝋(𝒙(𝟎), 𝒕) = 𝒑(𝒙(𝟎), 𝒕) + 𝑰𝒏𝒕𝒗𝒍.

Slide courtesy: Prof. Sriram Sankaranarayanan, UC Boulder

© 2023 Synopsys, Inc. 34

The Flow* Tool

• Case studies

– Descent guidance program for a UAV autolander [Zhan et al.]

– Verifying UAV controllers [Ethan Jackson et al. Microsoft Research]

– Verification of automotive controllers [Xiaoqing Jin et al. Toyota Motors]

– Analysis of medical device control algorithms [Dutta et al.’2017]

– Data-driven control verification [Chen+Dutta+Sank.’2019]

– Interval-based Bayesian Inference [Yi+Sank.’2019]

Synopsys Confidential Information

Work of Prof Erika Abraham, RWTH Aachen,

Prof Sriram Sankaranarayanan and Xin Chen, UC Boulder

http://www.flowstar.org

© 2023 Synopsys, Inc. 35

Concluding Remarks

• Most industrial safety standards (automotive, avionics, railways, industrial automation, space, nuclear) recommend the

use of formal verification for safety critical components

– These come under various computational structures – models, software, hardware, English specifications

• The complexity of the arithmetic is growing, and we need to invest in new types of methodologies, looking beyond

SAT/SMT

• We have a deep innovation pipeline in VC Formal, and we are continuously building new products and applications

soon that we can help the industry solve the hard problems of the future

Together, we will ensure a safe and reliable world !!

Thanks for your attention !!

	Slide 1: “Formal for Arithmetic” and “Arithmetic for Formal”
	Slide 2: The genesis of Formal for Arithmetic Circuits
	Slide 3: Reasoning about Arithmetic – Fundamental Limitations
	Slide 4: Evolution of Formal for Arithmetic
	Slide 5: Datapath Validation Requires Specialized Formal Technology
	Slide 6: Datapath Validation Requires Transactional Equivalence Checking
	Slide 7: VC Formal DPV: Synopsys Datapath Validation Solution
	Slide 8: VC Formal DPV: Benefits & Features
	Slide 9: VC Formal DPV Application: Verification of AI/ML Designs
	Slide 10: The Future of Arithmetic and Formal
	Slide 11: Complexity of Arithmetic for Formal Systems
	Slide 12: Challenge 1: Handling continuous time
	Slide 13: AMS Assertions
	Slide 14: Interval Arithmetic
	Slide 15: AMS Assertions with Local Variables
	Slide 16: States  Discrete State Sets  Regions
	Slide 17: Challenge 2: Symbolic Reachability in Dense Spaces
	Slide 18: Regions in Analog / Mixed-Signal
	Slide 19: The notion of hybrid automata
	Slide 20: The notion of hybrid automata
	Slide 21: Reachability and Fixpoint Computations
	Slide 22: Flow-pipes for Hybrid Systems
	Slide 23: Flow-pipe Construction: Challenges
	Slide 24: Set Representations
	Slide 25: Formal Modeling of Cyber-Physical Systems
	Slide 26: Mathematical Representation of Dynamical Systems
	Slide 27: Mathematical Representation of Dynamical Systems
	Slide 28: Mathematical Representation of Dynamical Systems
	Slide 29: Stability as a Safety Property
	Slide 30: Challenge 3: Intelligent Cyber-Physical Systems
	Slide 31: Building Trust in RL-based controllers
	Slide 32: Towards Flow*: Taylor Models
	Slide 33: Taylor Model Calculus
	Slide 34: The Flow* Tool
	Slide 35: Concluding Remarks

