
Verified Computer Arithmetic
for Cryptography and Elsewhere

John Harrison
Amazon Web Services

ARITH 2023

Mon 4th Sep 2023 (11:30–12:30)

s2n-bignum

An open-source library of bignum arithmetic operations designed
for cryptographic applications.

▶ Efficient: hand-crafted code with competitive performance

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

https://github.com/awslabs/s2n-bignum

All hand-written or specially generated 64-bit ARM and x86
machine code.

https://github.com/awslabs/s2n-bignum

s2n-bignum

An open-source library of bignum arithmetic operations designed
for cryptographic applications.

▶ Efficient: hand-crafted code with competitive performance

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

https://github.com/awslabs/s2n-bignum

All hand-written or specially generated 64-bit ARM and x86
machine code.

https://github.com/awslabs/s2n-bignum

s2n-bignum

An open-source library of bignum arithmetic operations designed
for cryptographic applications.

▶ Efficient: hand-crafted code with competitive performance

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

https://github.com/awslabs/s2n-bignum

All hand-written or specially generated 64-bit ARM and x86
machine code.

https://github.com/awslabs/s2n-bignum

s2n-bignum

An open-source library of bignum arithmetic operations designed
for cryptographic applications.

▶ Efficient: hand-crafted code with competitive performance

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

https://github.com/awslabs/s2n-bignum

All hand-written or specially generated 64-bit ARM and x86
machine code.

https://github.com/awslabs/s2n-bignum

s2n-bignum

An open-source library of bignum arithmetic operations designed
for cryptographic applications.

▶ Efficient: hand-crafted code with competitive performance

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

https://github.com/awslabs/s2n-bignum

All hand-written or specially generated 64-bit ARM and x86
machine code.

https://github.com/awslabs/s2n-bignum

s2n-bignum

An open-source library of bignum arithmetic operations designed
for cryptographic applications.

▶ Efficient: hand-crafted code with competitive performance

▶ Correct: every function is formally verified mathematically

▶ Secure: all code is written in “constant-time” style

https://github.com/awslabs/s2n-bignum

All hand-written or specially generated 64-bit ARM and x86
machine code.

https://github.com/awslabs/s2n-bignum

Open-source cryptography at AWS

Two main components of libraries like OpenSSL and BoringSSL:

▶ libtls: Transport layer security

▶ libcrypto: Cryptography

Open-source cryptography at AWS

Two main components of libraries like OpenSSL and BoringSSL:

▶ libtls: Transport layer security → s2n-tls

https://github.com/aws/s2n-tls

▶ libcrypto: Cryptography

https://github.com/aws/s2n-tls

Open-source cryptography at AWS

Two main components of libraries like OpenSSL and BoringSSL:

▶ libtls: Transport layer security → s2n-tls

https://github.com/aws/s2n-tls

▶ libcrypto: Cryptography → aws-lc

https://github.com/aws/aws-lc

https://github.com/aws/s2n-tls
https://github.com/aws/aws-lc

Open-source cryptography at AWS

Two main components of libraries like OpenSSL and BoringSSL:

▶ libtls: Transport layer security → s2n-tls

https://github.com/aws/s2n-tls

▶ libcrypto: Cryptography → aws-lc → s2n-bignum

https://github.com/aws/aws-lc

https://github.com/aws/s2n-tls
https://github.com/aws/aws-lc

Open-source cryptography at AWS

Two main components of libraries like OpenSSL and BoringSSL:

▶ libtls: Transport layer security → s2n-tls

https://github.com/aws/s2n-tls

▶ libcrypto: Cryptography → aws-lc → s2n-bignum

https://github.com/aws/aws-lc

Bignum arithmetic is fundamental in crypto algorithms like RSA,
ECDH, ECDSA, Mainly modular operations, with odd
modulus.

https://github.com/aws/s2n-tls
https://github.com/aws/aws-lc

2006: Verifying floating-point arithmetic at Intel

From arithmetic on R to arithmetic on Z

Floating-point kernels v cryptographic primitives

▶ They are both intended to be mathematically correct (give the
right answer or ‘within 0.52 ulps’)

▶ They are both intended to be fast

▶ Crypto bignums often need to be constant-time to avoid
timing side-channels

Floating-point kernels v cryptographic primitives

▶ They are both intended to be mathematically correct (give the
right answer or ‘within 0.52 ulps’)

▶ They are both intended to be fast

▶ Crypto bignums often need to be constant-time to avoid
timing side-channels

Floating-point kernels v cryptographic primitives

▶ They are both intended to be mathematically correct (give the
right answer or ‘within 0.52 ulps’)

▶ They are both intended to be fast

▶ Crypto bignums often need to be constant-time to avoid
timing side-channels

Plan for the talk

▶ Side channels and “constant-time” code

▶ s2n-bignum design and implementation

▶ s2n-bignum formal verification

▶ Comparison with floating-point numerics

Side channels and
“constant-time” code

Cyber-attacks

Attack on the Chappe semaphore system in 1834:

See Tom Standage “The Crooked Timber of Humanity”:
https://www.economist.com/1843/2017/10/05/

the-crooked-timber-of-humanity

https://www.economist.com/1843/2017/10/05/the-crooked-timber-of-humanity
https://www.economist.com/1843/2017/10/05/the-crooked-timber-of-humanity

Security holes in arithmetic?

https://i.blackhat.com/us-18/Wed-August-8/

us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.

pdf

https://i.blackhat.com/us-18/Wed-August-8/us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.pdf
https://i.blackhat.com/us-18/Wed-August-8/us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.pdf
https://i.blackhat.com/us-18/Wed-August-8/us-18-Valsorda-Squeezing-A-Key-Through-A-Carry-Bit-wp.pdf

Timing and cache attacks (1996, 2005)

https://paulkocher.com/doc/TimingAttacks.pdf

https://papers.freebsd.org/2005/cperciva-cache_

missing.files/cperciva-cache_missing-paper.pdf

https://paulkocher.com/doc/TimingAttacks.pdf
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf
https://papers.freebsd.org/2005/cperciva-cache_missing.files/cperciva-cache_missing-paper.pdf

Attacking binary exponentiation

Simplified binary exponentiation by repeated squaring:

a2n = (an)2

a2n+1 = a× (an)2

Example:

a3 = a× a2

a6 = (a3)2

a13 = a× (a6)2

Each step does an extra multiplication for a 1 bit

Attacking binary exponentiation

Simplified binary exponentiation by repeated squaring:

a2n = (an)2

a2n+1 = a× (an)2

Example:

a3 = a× a2

a6 = (a3)2

a13 = a× (a6)2

Each step does an extra multiplication for a 1 bit

Attacking binary exponentiation

Simplified binary exponentiation by repeated squaring:

a2n = (an)2

a2n+1 = a× (an)2

Example:

a3 = a× a2

a6 = (a3)2

a13 = a× (a6)2

Each step does an extra multiplication for a 1 bit

Side-channels

Just some of many side-channels by which systems may ‘leak’
secret info (like a private key) to an observer:

▶ Execution time

▶ Memory access pattern

▶ Power consumption

▶ Electromagnetic radiation emitted

▶ . . .

▶ Microarchitectural bugs

Main worries in typical multitasking OS on shared machine

Side-channels

Just some of many side-channels by which systems may ‘leak’
secret info (like a private key) to an observer:

▶ Execution time ←
▶ Memory access pattern ←
▶ Power consumption

▶ Electromagnetic radiation emitted

▶ . . .

▶ Microarchitectural bugs

Main worries in typical multitasking OS on shared machine

How can you avoid timing/cache side-channels?

Want execution time, if not literally constant, uncorrelated with
(secret) data being manipulated. How?

▶ Add randomization or salting to the algorithm

▶ Balance timing of paths

▶ Just make it too fast to observe

▶ Always perform exactly the same operations regardless of
(secret) data. ←− Our chosen solution

How can you avoid timing/cache side-channels?

Want execution time, if not literally constant, uncorrelated with
(secret) data being manipulated. How?

▶ Add randomization or salting to the algorithm

▶ Balance timing of paths

▶ Just make it too fast to observe

▶ Always perform exactly the same operations regardless of
(secret) data. ←− Our chosen solution

How can you avoid timing/cache side-channels?

Want execution time, if not literally constant, uncorrelated with
(secret) data being manipulated. How?

▶ Add randomization or salting to the algorithm

▶ Balance timing of paths

▶ Just make it too fast to observe

▶ Always perform exactly the same operations regardless of
(secret) data. ←− Our chosen solution

How can you ‘always do the same thing’?

When there is control flow depending on secret data:

if (n >= p) n = n - p;

convert it into dataflow using masking, conditional moves etc.

b = (n < p) - 1;

n = n - (p & b);

How can you ‘always do the same thing’?

When there is control flow depending on secret data:

if (n >= p) n = n - p;

convert it into dataflow using masking, conditional moves etc.

b = (n < p) - 1;

n = n - (p & b);

What about the compiler?

The compiler may naively turn mask creation back into a branch:

b = (n < p) - 1;

Time to break out your copy of “Hacker’s Delight”:

b = (((~n & p) | ((~n | p) & (n - p))) >> 63) - 1;

Another motivation for working directly in machine code where
flags and useful instructions like CMOV and CSEL are available.

What about the compiler?

The compiler may naively turn mask creation back into a branch:

b = (n < p) - 1;

Time to break out your copy of “Hacker’s Delight”:

b = (((~n & p) | ((~n | p) & (n - p))) >> 63) - 1;

Another motivation for working directly in machine code where
flags and useful instructions like CMOV and CSEL are available.

What about the compiler?

The compiler may naively turn mask creation back into a branch:

b = (n < p) - 1;

Time to break out your copy of “Hacker’s Delight”:

b = (((~n & p) | ((~n | p) & (n - p))) >> 63) - 1;

Another motivation for working directly in machine code where
flags and useful instructions like CMOV and CSEL are available.

Are the machine instructions constant-time?

▶ Some definitely not, e.g. division by zero is special

▶ General assumption that simple things like add, mul mostly are

Recently CPUs have started offering some guarantees (DIT bit or
DOIT mode).

Are the machine instructions constant-time?

▶ Some definitely not, e.g. division by zero is special

▶ General assumption that simple things like add, mul mostly are

Recently CPUs have started offering some guarantees (DIT bit or
DOIT mode).

Some empirical results on timing

Times for 384-bit modular inverse at bit densities 0–63,
nanoseconds on Intel® Xeon® Platinum 8175M, 2.5 GHz.

s2n-bignum
design and implementation

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?

Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?

Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?

Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?

Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?

Many functions have two variants for different uarchs

Design overview

Typical design questions and tradeoffs:

▶ Saturated or unsaturated number representation?
Saturated

▶ Multiplication: schoolbook, Karatsuba, NTT, . . . ?
Mix of schoolbook and Karatsuba

▶ Modular reduction: traditional or Montgomery?
Montgomery except for some special moduli

▶ Use/avoid special instructions and ISA features?
Occasional use, mostly limited palette and little SIMD

▶ Specialize for particular microarchitectures?
Many functions have two variants for different uarchs

Architecture matters

Recent x86 chips support MULX, ADCX and ADOX instructions
specifically designed for integer multiplication, often giving around
a 1.3X speedup versus traditional MUL/ADD/ADC.

Ozturk, Guilford, Gopal and Feghali, New Instructions Supporting
Large Integer Arithmetic on Intel® Architecture Processors, 2012

Hence different s2n-bignum function variants:

▶ bignum_mul_4_8 - 256× 256 bit multiplication using new
instructions (better performance on recent CPUs)

▶ bignum_mul_4_8_alt - identical functionality using
traditional operations (compatibility for older CPUs)

Architecture matters

Recent x86 chips support MULX, ADCX and ADOX instructions
specifically designed for integer multiplication, often giving around
a 1.3X speedup versus traditional MUL/ADD/ADC.

Ozturk, Guilford, Gopal and Feghali, New Instructions Supporting
Large Integer Arithmetic on Intel® Architecture Processors, 2012

Hence different s2n-bignum function variants:

▶ bignum_mul_4_8 - 256× 256 bit multiplication using new
instructions (better performance on recent CPUs)

▶ bignum_mul_4_8_alt - identical functionality using
traditional operations (compatibility for older CPUs)

Architecture matters

Recent x86 chips support MULX, ADCX and ADOX instructions
specifically designed for integer multiplication, often giving around
a 1.3X speedup versus traditional MUL/ADD/ADC.

Ozturk, Guilford, Gopal and Feghali, New Instructions Supporting
Large Integer Arithmetic on Intel® Architecture Processors, 2012

Hence different s2n-bignum function variants:

▶ bignum_mul_4_8 - 256× 256 bit multiplication using new
instructions (better performance on recent CPUs)

▶ bignum_mul_4_8_alt - identical functionality using
traditional operations (compatibility for older CPUs)

Microarchitecture matters

Even with the same instructions, different ARM®v8 architecture
CPUs have significantly different microarchitectural characteristics,
in particular throughput of UMULH.

▶ bignum_mul_4_8 - 256× 256 bit multiplication using two
layers of Karatsuba reduction

▶ bignum_mul_4_8_alt - identical functionality using pure
schoolbook multiplication.

Performance ratio on various CPUs can be almost 2X, but not
always in the same direction!

Microarchitecture matters

Even with the same instructions, different ARM®v8 architecture
CPUs have significantly different microarchitectural characteristics,
in particular throughput of UMULH.

▶ bignum_mul_4_8 - 256× 256 bit multiplication using two
layers of Karatsuba reduction

▶ bignum_mul_4_8_alt - identical functionality using pure
schoolbook multiplication.

Performance ratio on various CPUs can be almost 2X, but not
always in the same direction!

Microarchitecture matters

Even with the same instructions, different ARM®v8 architecture
CPUs have significantly different microarchitectural characteristics,
in particular throughput of UMULH.

▶ bignum_mul_4_8 - 256× 256 bit multiplication using two
layers of Karatsuba reduction

▶ bignum_mul_4_8_alt - identical functionality using pure
schoolbook multiplication.

Performance ratio on various CPUs can be almost 2X, but not
always in the same direction!

Asymptotically efficient multiplication algorithms

▶ Schoolbook is O(n2)

▶ Karatsuba is O(n1.5849...)

▶ NTT is O(n log n log log n)

For example (subtractive) Karatsuba trades a multiplication for
more additions

(Bx1+x0)(By1+y0) = B2x1y1+B((x1−x0)(y0−y1)+x1y1+x0y0)+x0y0

Asymptotically efficient multiplication algorithms

▶ Schoolbook is O(n2)

▶ Karatsuba is O(n1.5849...)

▶ NTT is O(n log n log log n)

For example (subtractive) Karatsuba trades a multiplication for
more additions

(Bx1+x0)(By1+y0) = B2x1y1+B((x1−x0)(y0−y1)+x1y1+x0y0)+x0y0

When do they become worthwhile?

Especially on microarchitectures that have lower multiplier
throughputs, these fancier algorithms are more practical than you
might think.

▶ Karatsuba may be worthwhile even for sizes like 64 or 128
bits. See Liu, Järvinen, Liu and Seo, Multiprecision
Multiplication on ARMv8 in ARITH 2017

▶ “Arbitrary degree Karatsuba” (ADK) can subdivide size by
any factor (e.g. 192→ 3× 64). See Mike Scott: Missing a
trick: Karatsuba variations, 2015.

▶ NTT may already be competitive for the sizes typically used
in RSA (1024-4096 bits). See Becker, Hwang, Kannwischer,
Panny and Yang, Efficient Multiplication of Somewhat Small
Integers using Number-Theoretic Transforms, IWSEC 2022.

When do they become worthwhile?

Especially on microarchitectures that have lower multiplier
throughputs, these fancier algorithms are more practical than you
might think.

▶ Karatsuba may be worthwhile even for sizes like 64 or 128
bits. See Liu, Järvinen, Liu and Seo, Multiprecision
Multiplication on ARMv8 in ARITH 2017

▶ “Arbitrary degree Karatsuba” (ADK) can subdivide size by
any factor (e.g. 192→ 3× 64). See Mike Scott: Missing a
trick: Karatsuba variations, 2015.

▶ NTT may already be competitive for the sizes typically used
in RSA (1024-4096 bits). See Becker, Hwang, Kannwischer,
Panny and Yang, Efficient Multiplication of Somewhat Small
Integers using Number-Theoretic Transforms, IWSEC 2022.

When do they become worthwhile?

Especially on microarchitectures that have lower multiplier
throughputs, these fancier algorithms are more practical than you
might think.

▶ Karatsuba may be worthwhile even for sizes like 64 or 128
bits. See Liu, Järvinen, Liu and Seo, Multiprecision
Multiplication on ARMv8 in ARITH 2017

▶ “Arbitrary degree Karatsuba” (ADK) can subdivide size by
any factor (e.g. 192→ 3× 64). See Mike Scott: Missing a
trick: Karatsuba variations, 2015.

▶ NTT may already be competitive for the sizes typically used
in RSA (1024-4096 bits). See Becker, Hwang, Kannwischer,
Panny and Yang, Efficient Multiplication of Somewhat Small
Integers using Number-Theoretic Transforms, IWSEC 2022.

When do they become worthwhile?

Especially on microarchitectures that have lower multiplier
throughputs, these fancier algorithms are more practical than you
might think.

▶ Karatsuba may be worthwhile even for sizes like 64 or 128
bits. See Liu, Järvinen, Liu and Seo, Multiprecision
Multiplication on ARMv8 in ARITH 2017

▶ “Arbitrary degree Karatsuba” (ADK) can subdivide size by
any factor (e.g. 192→ 3× 64). See Mike Scott: Missing a
trick: Karatsuba variations, 2015.

▶ NTT may already be competitive for the sizes typically used
in RSA (1024-4096 bits). See Becker, Hwang, Kannwischer,
Panny and Yang, Efficient Multiplication of Somewhat Small
Integers using Number-Theoretic Transforms, IWSEC 2022.

Vector instructions

Many modern CPUs feature SIMD operations that potentially offer
higher operation throughputs, e.g. ARM® NEONTM and Intel®
AVX2.

▶ SIMD often works well in unsaturated contexts, good for some
moduli like 2255 − 19 or NTT-type approaches.

▶ Fine-grained interleaving can share work between scalar and
vector units. Juneyoung Lee’s recent improvements to
s2n-bignum.

▶ Coarse-grained interleaving may help when there is parallelism
in the toplevel operations. See Emil Lenngren, AArch64
optimized implementation for X25519, 2019.

▶ With many SIMD lanes and fairly wide multiplies, these may
finally outperform scalar multipliers overall, e.g. ifma.

Vector instructions

Many modern CPUs feature SIMD operations that potentially offer
higher operation throughputs, e.g. ARM® NEONTM and Intel®
AVX2.

▶ SIMD often works well in unsaturated contexts, good for some
moduli like 2255 − 19 or NTT-type approaches.

▶ Fine-grained interleaving can share work between scalar and
vector units. Juneyoung Lee’s recent improvements to
s2n-bignum.

▶ Coarse-grained interleaving may help when there is parallelism
in the toplevel operations. See Emil Lenngren, AArch64
optimized implementation for X25519, 2019.

▶ With many SIMD lanes and fairly wide multiplies, these may
finally outperform scalar multipliers overall, e.g. ifma.

Vector instructions

Many modern CPUs feature SIMD operations that potentially offer
higher operation throughputs, e.g. ARM® NEONTM and Intel®
AVX2.

▶ SIMD often works well in unsaturated contexts, good for some
moduli like 2255 − 19 or NTT-type approaches.

▶ Fine-grained interleaving can share work between scalar and
vector units. Juneyoung Lee’s recent improvements to
s2n-bignum.

▶ Coarse-grained interleaving may help when there is parallelism
in the toplevel operations. See Emil Lenngren, AArch64
optimized implementation for X25519, 2019.

▶ With many SIMD lanes and fairly wide multiplies, these may
finally outperform scalar multipliers overall, e.g. ifma.

Vector instructions

Many modern CPUs feature SIMD operations that potentially offer
higher operation throughputs, e.g. ARM® NEONTM and Intel®
AVX2.

▶ SIMD often works well in unsaturated contexts, good for some
moduli like 2255 − 19 or NTT-type approaches.

▶ Fine-grained interleaving can share work between scalar and
vector units. Juneyoung Lee’s recent improvements to
s2n-bignum.

▶ Coarse-grained interleaving may help when there is parallelism
in the toplevel operations. See Emil Lenngren, AArch64
optimized implementation for X25519, 2019.

▶ With many SIMD lanes and fairly wide multiplies, these may
finally outperform scalar multipliers overall, e.g. ifma.

Vector instructions

Many modern CPUs feature SIMD operations that potentially offer
higher operation throughputs, e.g. ARM® NEONTM and Intel®
AVX2.

▶ SIMD often works well in unsaturated contexts, good for some
moduli like 2255 − 19 or NTT-type approaches.

▶ Fine-grained interleaving can share work between scalar and
vector units. Juneyoung Lee’s recent improvements to
s2n-bignum.

▶ Coarse-grained interleaving may help when there is parallelism
in the toplevel operations. See Emil Lenngren, AArch64
optimized implementation for X25519, 2019.

▶ With many SIMD lanes and fairly wide multiplies, these may
finally outperform scalar multipliers overall, e.g. ifma.

Some performance improvement numbers

Integrating X25519-related functions from s2n-bignum into
aws-lc, versus code previously used (close to BoringSSL).

AWS® Graviton 2 2.13x
AWS® Graviton 3 1.57x
Apple® M1 1.73x
Modern Intel® and AMD® x86 1.75x - 1.85x
Intel® x86 “Haswell” 1.27x

s2n-bignum
formal verification

Formal verification

Using a (machine-checked) mathematical proof to verify that an
implementation satisfies its mathematical specification.

Actual system

Design model

Formal specification

Actual requirements

6

6

6

Coding and verification flow

Verifying the actual code

Formalization of code as byte sequence derived from the object file:

define_assert_from_elf "bignum_montmul_p256_mc"

"arm/p256/bignum_montmul_p256.o"

Automatically re-check when code and/or proof changes:

p256/%.correct: proofs/%.ml p256/%.o ;

Run in continuous integration on any github pull request

Verifying the actual code

Formalization of code as byte sequence derived from the object file:

define_assert_from_elf "bignum_montmul_p256_mc"

"arm/p256/bignum_montmul_p256.o"

Automatically re-check when code and/or proof changes:

p256/%.correct: proofs/%.ml p256/%.o ;

Run in continuous integration on any github pull request

Verifying the actual code

Formalization of code as byte sequence derived from the object file:

define_assert_from_elf "bignum_montmul_p256_mc"

"arm/p256/bignum_montmul_p256.o"

Automatically re-check when code and/or proof changes:

p256/%.correct: proofs/%.ml p256/%.o ;

Run in continuous integration on any github pull request

Modeling instruction decoding and execution

Decoding instruction byte sequences to their semantics:

...

| [0b1101011001011111000000:22; Rn:5; 0:5] ->

SOME (arm_RET (XREG’ Rn))

| [0b10011011110:11; Rm:5; 0b011111:6; Rn:5; Rd:5] ->

SOME (arm_UMULH (XREG’ Rd) (XREG’ Rn) (XREG’ Rm))

| [1:1; x; 0b1110000:7; ld; 0:1; imm9:9; 0b01:2; Rn:5; Rt:5] ->

SOME (arm_ldst ld x Rt (XREG_SP Rn) (Postimmediate_Offset (word_sx imm9)))

...

Semantics details the state changes from each instruction:

arm_ADDS Rd Rm Rn s =

let m = read Rm s

and n = read Rn s in

let d = word_add m n in

(Rd := d ,,

NF := (ival d < &0) ,,

ZF := (val d = 0) ,,

CF := ~(val m + val n = val d) ,,

VF := ~(ival m + ival n = ival d)) s

Modeling instruction decoding and execution

Decoding instruction byte sequences to their semantics:

...

| [0b1101011001011111000000:22; Rn:5; 0:5] ->

SOME (arm_RET (XREG’ Rn))

| [0b10011011110:11; Rm:5; 0b011111:6; Rn:5; Rd:5] ->

SOME (arm_UMULH (XREG’ Rd) (XREG’ Rn) (XREG’ Rm))

| [1:1; x; 0b1110000:7; ld; 0:1; imm9:9; 0b01:2; Rn:5; Rt:5] ->

SOME (arm_ldst ld x Rt (XREG_SP Rn) (Postimmediate_Offset (word_sx imm9)))

...

Semantics details the state changes from each instruction:

arm_ADDS Rd Rm Rn s =

let m = read Rm s

and n = read Rn s in

let d = word_add m n in

(Rd := d ,,

NF := (ival d < &0) ,,

ZF := (val d = 0) ,,

CF := ~(val m + val n = val d) ,,

VF := ~(ival m + ival n = ival d)) s

Nondeterminism

The semantics is a relation between initial and final states that
might be nondeterministic (might not be a function).

x86_IMUL3 dest (src1,src2) s =

let x = read src1 s and y = read src2 s in

let z = word_mul x y in

(dest := z ,,

CF := ~(ival x * ival y = ival z) ,,

OF := ~(ival x * ival y = ival z) ,,

UNDEFINED_VALUES[ZF;SF;PF;AF]) s

Correctness proved for all possible sequences of states from an
initial state.

Hoare logic + Symbolic simulation

The approach to verification tries to combine the best of two
methods:

▶ Machine code Hoare logic: Myreen, Fox and Gordon, Hoare
Logic for ARM machine code, FSEN 2007

▶ Symbolic simulation: Dockins, Folzer, Hendrix, Huffman,
McNamee and Tomb, Constructing Semantic Models of
Programs with the Software Analysis Workbench, VSTTE
2014.

These are combined in two ways:

▶ Use Hoare logic for high-level invariants and breakpoints,
symbolic simulation for routine parts.

▶ Symbolic simulation can simulate through subroutines
atomically based on their Hoare triples.

Hoare logic + Symbolic simulation

The approach to verification tries to combine the best of two
methods:

▶ Machine code Hoare logic: Myreen, Fox and Gordon, Hoare
Logic for ARM machine code, FSEN 2007

▶ Symbolic simulation: Dockins, Folzer, Hendrix, Huffman,
McNamee and Tomb, Constructing Semantic Models of
Programs with the Software Analysis Workbench, VSTTE
2014.

These are combined in two ways:

▶ Use Hoare logic for high-level invariants and breakpoints,
symbolic simulation for routine parts.

▶ Symbolic simulation can simulate through subroutines
atomically based on their Hoare triples.

Verification results

Correctness as elaborated Hoare triples with ‘frame condition’:

|- nonoverlapping (word pc,0x2de) (z,8 * 12) /\

(y = z \/ nonoverlapping (y,8 * 6) (z,8 * 12)) /\

nonoverlapping (x,8 * 6) (z,8 * 12)

==> ensures x86

(\s. bytes_loaded s (word pc) bignum_mul_6_12_mc /\

read RIP s = word(pc + 0x06) /\

C_ARGUMENTS [z; x; y] s /\

bignum_from_memory (x,6) s = a /\

bignum_from_memory (y,6) s = b)

(\s. read RIP s = word (pc + 0x2d7) /\

bignum_from_memory (z,12) s = a * b)

(MAYCHANGE [RIP; RAX; RBP; RBX; RCX; RDX;

R8; R9; R10; R11; R12; R13] ,,

MAYCHANGE [memory :> bytes(z,8 * 12)] ,,

MAYCHANGE SOME_FLAGS)

Proof sizes / Annotation ratio

Stripping out copies of the code from inside the proofs:

ARM x86

Lines of source code 98263 79153
Lines of proof 142643 130393

Bytes of source code 3441575 2677243
Bytes of proof 7581703 6888788

Bytes of machine code 751128 657388

Compare the ‘de Bruijn factor’ of formalized mathematics

Proof sizes / Annotation ratio

Stripping out copies of the code from inside the proofs:

ARM x86

Lines of source code 98263 79153
Lines of proof 142643 130393

Bytes of source code 3441575 2677243
Bytes of proof 7581703 6888788

Bytes of machine code 751128 657388

Compare the ‘de Bruijn factor’ of formalized mathematics

Comparison with floating-point
numerics

A contrast: MSB versus LSB

Floating-point numbers, usually being normalized, naturally lend
themselves to algorithms based on the ‘most significant bit’.

In cryptography, even identifying and manipulating MSBs can be
awkward or unnatural to do in constant time.

More usage of LSB-based algorithms such as Montgomery
multiplication.

A contrast: MSB versus LSB

Floating-point numbers, usually being normalized, naturally lend
themselves to algorithms based on the ‘most significant bit’.

In cryptography, even identifying and manipulating MSBs can be
awkward or unnatural to do in constant time.

More usage of LSB-based algorithms such as Montgomery
multiplication.

A contrast: MSB versus LSB

Floating-point numbers, usually being normalized, naturally lend
themselves to algorithms based on the ‘most significant bit’.

In cryptography, even identifying and manipulating MSBs can be
awkward or unnatural to do in constant time.

More usage of LSB-based algorithms such as Montgomery
multiplication.

Peter Montgomery

At ARITH 2009 on the cruise:

Montgomery reduction

Montgomery reduction is essentially division by a power of 2,
modulo an odd number m.

▶ Conventional modular reduction: x = qm + r (cancel leading
bits by subtracting multiples of m)
hhh· · ·hhh lll · · ·lll → 000· · ·000 rrr · · ·rrr → rrr · · ·rrr

▶ Montgomery reduction: x = qm + 2αs (cancel trailing bits by
adding multiples of m)
hhh· · ·hhh lll · · ·lll → sss· · ·sss 000· · ·000→ sss· · ·sss

Can then keep integers systematically in the ‘Montgomery
domain’, multiplied by 2α modulo m and do Montgomery
multiplications (multiplication + Montgomery reduction).

Montgomery reduction

Montgomery reduction is essentially division by a power of 2,
modulo an odd number m.

▶ Conventional modular reduction: x = qm + r (cancel leading
bits by subtracting multiples of m)
hhh· · ·hhh lll · · ·lll → 000· · ·000 rrr · · ·rrr → rrr · · ·rrr

▶ Montgomery reduction: x = qm + 2αs (cancel trailing bits by
adding multiples of m)
hhh· · ·hhh lll · · ·lll → sss· · ·sss 000· · ·000→ sss· · ·sss

Can then keep integers systematically in the ‘Montgomery
domain’, multiplied by 2α modulo m and do Montgomery
multiplications (multiplication + Montgomery reduction).

Montgomery reduction

Montgomery reduction is essentially division by a power of 2,
modulo an odd number m.

▶ Conventional modular reduction: x = qm + r (cancel leading
bits by subtracting multiples of m)
hhh· · ·hhh lll · · ·lll → 000· · ·000 rrr · · ·rrr → rrr · · ·rrr

▶ Montgomery reduction: x = qm + 2αs (cancel trailing bits by
adding multiples of m)
hhh· · ·hhh lll · · ·lll → sss· · ·sss 000· · ·000→ sss· · ·sss

Can then keep integers systematically in the ‘Montgomery
domain’, multiplied by 2α modulo m and do Montgomery
multiplications (multiplication + Montgomery reduction).

Montgomery reduction

Montgomery reduction is essentially division by a power of 2,
modulo an odd number m.

▶ Conventional modular reduction: x = qm + r (cancel leading
bits by subtracting multiples of m)
hhh· · ·hhh lll · · ·lll → 000· · ·000 rrr · · ·rrr → rrr · · ·rrr

▶ Montgomery reduction: x = qm + 2αs (cancel trailing bits by
adding multiples of m)
hhh· · ·hhh lll · · ·lll → sss· · ·sss 000· · ·000→ sss· · ·sss

Can then keep integers systematically in the ‘Montgomery
domain’, multiplied by 2α modulo m and do Montgomery
multiplications (multiplication + Montgomery reduction).

An analogy: MSB versus LSB

There are meaningful analogies between ‘metrical’ and ‘p-adic’
algorithms:

▶ Over R where things get smaller

▶ Over Z where things get more divisible by p

One can explicitly cast the latter as a metric, and perform metric
space completion to get the ‘p-adic numbers’.

Brent and Zimmermann, Modern Computer Arithmetic, Table 2.1:

classical (MSB) p-adic (LSB)

Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery-Svoboda

Euclidean gcd Binary gcd
Newton’s method Hensel lifting

An analogy: MSB versus LSB

There are meaningful analogies between ‘metrical’ and ‘p-adic’
algorithms:

▶ Over R where things get smaller

▶ Over Z where things get more divisible by p

One can explicitly cast the latter as a metric, and perform metric
space completion to get the ‘p-adic numbers’.

Brent and Zimmermann, Modern Computer Arithmetic, Table 2.1:

classical (MSB) p-adic (LSB)

Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery-Svoboda

Euclidean gcd Binary gcd
Newton’s method Hensel lifting

An analogy: MSB versus LSB

There are meaningful analogies between ‘metrical’ and ‘p-adic’
algorithms:

▶ Over R where things get smaller

▶ Over Z where things get more divisible by p

One can explicitly cast the latter as a metric, and perform metric
space completion to get the ‘p-adic numbers’.

Brent and Zimmermann, Modern Computer Arithmetic, Table 2.1:

classical (MSB) p-adic (LSB)

Euclidean division Hensel division, Montgomery reduction
Svoboda’s algorithm Montgomery-Svoboda

Euclidean gcd Binary gcd
Newton’s method Hensel lifting

Using Newton’s method for reciprocals

Floating-point computation of 1/a:

▶ Form initial approximation y ≈ 1
a

▶ Then iterate y ′ = y · (2− ay) = y + y · (1− ay)

If y = 1
a (1 + ϵ) then y ′ = 1

a (1− ϵ2), the classic quadratic
convergence where we get twice as many bits of accuracy per
iteration.

Using Newton’s method for reciprocals

Floating-point computation of 1/a:

▶ Form initial approximation y ≈ 1
a

▶ Then iterate y ′ = y · (2− ay) = y + y · (1− ay)

If y = 1
a (1 + ϵ) then y ′ = 1

a (1− ϵ2), the classic quadratic
convergence where we get twice as many bits of accuracy per
iteration.

Modular inverses by Hensel lifting

Consider the 1-word (negated) modular inverse, called
word negmodinv in s2n-bignum.

Given a 64-bit unsigned and odd integer a, returns another 64-bit
integer x such that ax ≡ −1 (mod 264), i.e. that
a * x == 0xFFFFFFFFFFFFFFFF using unsigned silently-wrapping
word operations like those on C’s uint64_t.
It is implemented in a directly similar way using Hensel lifting, the
p-adic analog of Newton’s method.

Modular inverses by Hensel lifting

Consider the 1-word (negated) modular inverse, called
word negmodinv in s2n-bignum.
Given a 64-bit unsigned and odd integer a, returns another 64-bit
integer x such that ax ≡ −1 (mod 264), i.e. that
a * x == 0xFFFFFFFFFFFFFFFF using unsigned silently-wrapping
word operations like those on C’s uint64_t.

It is implemented in a directly similar way using Hensel lifting, the
p-adic analog of Newton’s method.

Modular inverses by Hensel lifting

Consider the 1-word (negated) modular inverse, called
word negmodinv in s2n-bignum.
Given a 64-bit unsigned and odd integer a, returns another 64-bit
integer x such that ax ≡ −1 (mod 264), i.e. that
a * x == 0xFFFFFFFFFFFFFFFF using unsigned silently-wrapping
word operations like those on C’s uint64_t.
It is implemented in a directly similar way using Hensel lifting, the
p-adic analog of Newton’s method.

Initial approximation

As with the floating-point inverse, we need an initial approximation
to start with. The following piece of magic (in C syntax):

x = (a - (a<<2))^2

happens to give a 5-bit negated modular inverse, assuming a is
odd.

Hensel lifting step

Given a k-bit approximation ax ≡ −1 (mod 2k), do the same
Newton step with integers, except for a sign flip because we want a
negated inverse:

e = a * x + 1;

y = e * x + x;

By the initial assumption ax = 2kn − 1 for some integer n
So e = ax + 1 = 2kn and e + 1 = 2kn + 1 so then
ay = ax(e + 1) = (2kn − 1)(2kn + 1) = 22kn2 − 1, i.e.
ay ≡ −1 (mod 22k).

Hensel lifting step

Given a k-bit approximation ax ≡ −1 (mod 2k), do the same
Newton step with integers, except for a sign flip because we want a
negated inverse:

e = a * x + 1;

y = e * x + x;

By the initial assumption ax = 2kn − 1 for some integer n

So e = ax + 1 = 2kn and e + 1 = 2kn + 1 so then
ay = ax(e + 1) = (2kn − 1)(2kn + 1) = 22kn2 − 1, i.e.
ay ≡ −1 (mod 22k).

Hensel lifting step

Given a k-bit approximation ax ≡ −1 (mod 2k), do the same
Newton step with integers, except for a sign flip because we want a
negated inverse:

e = a * x + 1;

y = e * x + x;

By the initial assumption ax = 2kn − 1 for some integer n
So e = ax + 1 = 2kn and

e + 1 = 2kn + 1 so then
ay = ax(e + 1) = (2kn − 1)(2kn + 1) = 22kn2 − 1, i.e.
ay ≡ −1 (mod 22k).

Hensel lifting step

Given a k-bit approximation ax ≡ −1 (mod 2k), do the same
Newton step with integers, except for a sign flip because we want a
negated inverse:

e = a * x + 1;

y = e * x + x;

By the initial assumption ax = 2kn − 1 for some integer n
So e = ax + 1 = 2kn and e + 1 = 2kn + 1

so then
ay = ax(e + 1) = (2kn − 1)(2kn + 1) = 22kn2 − 1, i.e.
ay ≡ −1 (mod 22k).

Hensel lifting step

Given a k-bit approximation ax ≡ −1 (mod 2k), do the same
Newton step with integers, except for a sign flip because we want a
negated inverse:

e = a * x + 1;

y = e * x + x;

By the initial assumption ax = 2kn − 1 for some integer n
So e = ax + 1 = 2kn and e + 1 = 2kn + 1 so then
ay = ax(e + 1) = (2kn − 1)(2kn + 1) = 22kn2 − 1, i.e.
ay ≡ −1 (mod 22k).

The same analogies in verification

Linear (Presburger) arithmetic is a long-established workhorse in
program verification.

|x − x ′| ≤ e/2 ∧ |y − y ′| < e/2⇒ |(x + y)− (x ′ + y ′)| < e

For a lot of the ‘congruential’ reasoning a custom decision
procedure is a similarly useful workhorse:

coprime(d , a) ∧ coprime(d , b)⇒ coprime(d , ab)
ax ≡ ay (mod n) ∧ coprime(a, n)⇒ x ≡ y (mod n)
gcd(a, n) | b ⇒ ∃x . ax ≡ b (mod n)

See Harrison, Automating elementary number-theoretic proofs
using Gröbner bases, CADE21.

The same analogies in verification

Linear (Presburger) arithmetic is a long-established workhorse in
program verification.

|x − x ′| ≤ e/2 ∧ |y − y ′| < e/2⇒ |(x + y)− (x ′ + y ′)| < e

For a lot of the ‘congruential’ reasoning a custom decision
procedure is a similarly useful workhorse:

coprime(d , a) ∧ coprime(d , b)⇒ coprime(d , ab)
ax ≡ ay (mod n) ∧ coprime(a, n)⇒ x ≡ y (mod n)
gcd(a, n) | b ⇒ ∃x . ax ≡ b (mod n)

See Harrison, Automating elementary number-theoretic proofs
using Gröbner bases, CADE21.

The same analogies in verification

Linear (Presburger) arithmetic is a long-established workhorse in
program verification.

|x − x ′| ≤ e/2 ∧ |y − y ′| < e/2⇒ |(x + y)− (x ′ + y ′)| < e

For a lot of the ‘congruential’ reasoning a custom decision
procedure is a similarly useful workhorse:

coprime(d , a) ∧ coprime(d , b)⇒ coprime(d , ab)
ax ≡ ay (mod n) ∧ coprime(a, n)⇒ x ≡ y (mod n)
gcd(a, n) | b ⇒ ∃x . ax ≡ b (mod n)

See Harrison, Automating elementary number-theoretic proofs
using Gröbner bases, CADE21.

Other verification similarities

▶ Value of general theorem proving framework for reasoning,
and even for stating the specification

▶ Specifications are clear and mathematical, without much
ambiguity

▶ Requirement for special-purpose inference rules (e.g.
combining interval reasoning and algebra).

▶ Can more confidently adopt sophisticated algorithms and
subtle optimizations thanks to FV

▶ Typically, experts in both fields can appreciate the meaning
and value of formal verification.

Other verification similarities

▶ Value of general theorem proving framework for reasoning,
and even for stating the specification

▶ Specifications are clear and mathematical, without much
ambiguity

▶ Requirement for special-purpose inference rules (e.g.
combining interval reasoning and algebra).

▶ Can more confidently adopt sophisticated algorithms and
subtle optimizations thanks to FV

▶ Typically, experts in both fields can appreciate the meaning
and value of formal verification.

Other verification similarities

▶ Value of general theorem proving framework for reasoning,
and even for stating the specification

▶ Specifications are clear and mathematical, without much
ambiguity

▶ Requirement for special-purpose inference rules (e.g.
combining interval reasoning and algebra).

▶ Can more confidently adopt sophisticated algorithms and
subtle optimizations thanks to FV

▶ Typically, experts in both fields can appreciate the meaning
and value of formal verification.

Other verification similarities

▶ Value of general theorem proving framework for reasoning,
and even for stating the specification

▶ Specifications are clear and mathematical, without much
ambiguity

▶ Requirement for special-purpose inference rules (e.g.
combining interval reasoning and algebra).

▶ Can more confidently adopt sophisticated algorithms and
subtle optimizations thanks to FV

▶ Typically, experts in both fields can appreciate the meaning
and value of formal verification.

Other verification similarities

▶ Value of general theorem proving framework for reasoning,
and even for stating the specification

▶ Specifications are clear and mathematical, without much
ambiguity

▶ Requirement for special-purpose inference rules (e.g.
combining interval reasoning and algebra).

▶ Can more confidently adopt sophisticated algorithms and
subtle optimizations thanks to FV

▶ Typically, experts in both fields can appreciate the meaning
and value of formal verification.

Other verification similarities

▶ Value of general theorem proving framework for reasoning,
and even for stating the specification

▶ Specifications are clear and mathematical, without much
ambiguity

▶ Requirement for special-purpose inference rules (e.g.
combining interval reasoning and algebra).

▶ Can more confidently adopt sophisticated algorithms and
subtle optimizations thanks to FV

▶ Typically, experts in both fields can appreciate the meaning
and value of formal verification.

Questions?

