
Using loop transformations for precision tuning in
iterative programs

Youssef Fakhreddine and Guillaume Revy
Univ Perpignan Via Domitia, DALI, Perpignan, France

LIRMM, Univ Montpellier, CNRS (UMR 5506), Montpellier, France

Abstract—Many floating-point formats are available, providing
all different levels of precision. By mixing several of these
formats in the same program, it is possible to achieve good
performance while maintaining an acceptable level of output
accuracy. Therefore various tools have been designed to adapt
the precision of computations in floating-point programs for
performance and accuracy purposes. However most of them do
not consider the iterative nature of these programs. This article
presents a tool that enables to adapt the precision of floating-point
computations in iterative routines, at the iteration level. This
tool is based on multiple-precision computations to evaluate the
impact of some format adaptations on the output accuracy, and it
uses the delta-debugging to isolate the most relevant instruction
set to be tuned. The originality of our approach is that it relies on
static loop transformations to duplicate loop body instructions,
and thus to increase the number of possible instructions that
can be targeted. These transformations include especially the
loop splitting and unrolling, which enable to allocate different
precisions for different iterations, and thus to improve the
tuning process. We show the advantages of this approach on
a representative set of iterative programs.
Keywords: floating-point arithmetic, mixed-precision, dynamic
precision tuning tool, multiple-precision, loop splitting and un-
rolling, delta-debugging algorithm

I. INTRODUCTION

The representation of real numbers in computer programs
is essential for scientists in many fields such as numerical
analysis, physics, and engineering. For example, real numbers
are used to represent a wide range of physical quantities, such
as temperature, distance, and velocity. However, representing
such numbers in a computer program can be challenging due
to the limited precision of digital computers.

Nowadays, floating-point arithmetic is widely used to repre-
sent real numbers on computer systems. For this purpose, the
IEEE-754 2019 standard provides four floating-point formats,
i.e. binary16, binary32, binary64, and binary128 [1]. Other
non IEEE formats are also available, like bfloat16 developed
by Google, TensorFloat-32 by NVidia, or Posit proposed by
Gustasfon [2]. All these offer different levels of accuracy.
Given these formats, the difficulty now for the developers is to
choose the appropriate format for each floating-point element
of a program to satisfy an accuracy constraint. Consequently,
from an accuracy point of view, they use most of the time
the more accurate format directly available on the targeted
hardware architectures. Yet, from a performance point of view,
the length of the type chosen for floating-point computations
can have a great impact on the execution time of the program.

For example, loading binary32 data from memory is cheaper
than loading binary64 data, and computing with binary32 data
is cheaper, as well. This is particularly true on SIMD units
since it is possible to pack twice as many binary32 than
binary64 data for the same register size.

Several works have already shown that sometimes lowering
the precision level of some variables, functions, or instructions
in numerical programs does not cause too much loss of
final accuracy, but it allows the program to gain speed. For
example, Baboulin et al. showed in [3] that such mixed-
precision programs can achieve similar accuracy to the original
binary64 precision program while being significantly faster
and reducing memory pressure. However, this work was done
by hand, and guided by the complexity of the subroutines in
use. And, in the general case, choosing the appropriate format
for each data or each instruction in a program is a difficult
task, which justifies the growing interest in auto-tuning tools.

In the last decade, many research projects are thus inter-
ested in auto-tuning for floating-point precision in numerical
programs. In this context, two approaches coexist. On the
first side, static approaches: Such tools analyze the program
without executing it to determine a precision requirement of
each variable in order to satisfy an accuracy constraint. Let us
cite for example Daisy [4], [5]. This tool combines affine and
interval arithmetics together with rewriting optimizations and
SMT-solving to produce finite precision programs that fulfill
accuracy requirements. In addition, it outputs correctness
certificates that can be checked by Coq or HOL4. FPTuner [6]
produces mixed-precision programs too, and it determines rig-
orous errors bounds by using Symbolic Taylor Expansions [7].
Another alternative is proposed by Martel in [8]. This tool
relies on a 2-step static analysis (forward and backward)
done by abstract interpretation to determine the precision of
each variable. It outputs mixed-precision programs, as well,
and constraints that can be afterward checked by an SMT
solver. These techniques have also been used in the SMT-based
version of POP [6]. These approaches give good results but
remain limited for large programs and complex structures like
loops. On the other side, dynamic approaches: Most of them
rely on a trial-and-error strategy, where a step is to compare the
results of both the original program and the transformed one to
estimate the accuracy loss. This is for example implemented
in Craft [9], [10] or Precimonious [11]. The former uses a
breadth-first search strategy to explore various mixed-precision
configurations, while the latter relies on the delta-debugging

int main(void) {
double S = 0.;

#pragma clang loop split_optimization(enable)
for (int i = 1; i <= 1000; i++)

S = S + 0.01;
printf("S = %.20e", S);
// ... |S - Soptim|/|S| < 1e-6 ?
check_reverse_rel_error(S, 1e-6);
return 0;

}

Listing 1: C program computing the sum S in (1).

algorithm [12]. This heuristic algorithm works like a binary
search to determine a locally maximum set of changes that
allows to fulfill the accuracy requirement and to produce a
mixed-precision program faster than the original one. One
of the limitations of these approaches is the combinatorics
linked to the number of possible transformations. To tackle
this issue, two extensions of Precimonious have been pro-
posed. Blame [13] reduces its search space by quickly ex-
hibiting variables whose precision does not impact the final
result, and HiFPTuner [14] groups dependent data requiring
the same level of precision in communities and it applies
transformations directly to these communities. Other alterna-
tives also exist: for example, Promise [15] and Verrou [16]
combine both Discrete Stochastic Arithmetic through the
CADNA library [17] and delta-debugging to produce mixed-
precision programs, while ADAPT [18] relies on automatic
differentiation to determine precision requirements of inputs
and intermediate variables. Recently, Pherbie [19] has been
developed on top of Herbie [20], which uses rewriting rules
and multiple-precision together with local error analyses to
adapt the precision of sub-expressions and to produce a set
of mixed-precision candidate implementations optimized for
accuracy and speed. These tools allow to tackle larger problem
than static ones, but they do not consider the iterative nature
of the program.

Indeed less attention has generally been paid to the tun-
ing of iterative programs. This is one of the limitations
of Precimonious mentioned by its authors, and only a few
attempts have been proposed in [21], [22], [23]. Hence, in this
article, we focus on dynamic auto-tuning tools for iterative
routines. The originality of our approach is to use static
loop transformations to increase the number of instructions
appearing in the program, improving consequently the tuning
process by allowing the allocation of different precisions at
different iterations.

The main contributions of this article are the following:
• A dynamic auto-tuning tool targeting iterative routines,

and that relies on three modules: static loop transforma-
tions to increase the combinatorics of possible precision
changes, the delta-debugging to find the most relevant
ones, and the fp2mp module that duplicates floating-
point computations with their equivalent in multiple-
precision in the original program in order to evaluate the
impact on numerical accuracy of tested configurations,

• And a set of examples, to show how our tool allows to
improve the result of the tuning process to the detriment
of an increase in the tuning time.

10−14

10−13

10−11

10−10

10−8

10−6

0 200 400 600 800 1000

re
la

tiv
e

er
ro

r

number of iterations in binary32

Figure 1: Relative error for the computation of S in (1), according
to the number of binary32 iterations.

The article is organized as follows: It starts by a motivating
example in Section II to show the interest of our approach.
Then Section III presents our tool, and in particular the differ-
ent modules it relies on. Section IV gives some experimental
results before a conclusion in Section V.

II. MOTIVATING EXAMPLE

To demonstrate the usefulness of our approach, let us consider
the program in Listing 1,1 that computes the sum

S =

1000∑
i=1

0.01 = 10. (1)

and where all the computations are performed in binary64
arithmetic. It returns S = 9.99999999999983124610.2

If the program was implemented using binary32 arithmetic,
the result would be S = 10.00013351440429687500,3

meaning with a relative error of about 10−5 compared to the
result in binary64.

Now, when dealing with auto-tuning tools, the question is
the following: What data or what instructions can be used in
lower precision (i.e. binary32) to achieve a result as accurate as
the one obtained using only the higher precision (i.e. binary64)
for a given threshold? For example, let us consider relative
error and a threshold of 10−6. The program contains two data
to be tuned (the variable S and the constant 0.01), and existing
approaches will give no solution because they will detect only
three possible transformations, which all give a result with a
relative error higher than 10−6 compared to binary64 result.
In our case, we aim at adapting the precision of instructions: it
is worth it since only one possible transformation is detected
resulting in the binary32 result.

However, some of these 1000 iterations, whose body con-
tains only one instruction each, could be performed in bi-
nary32 arithmetic, while keeping an acceptable output accu-
racy. For example, let us see what happens if the program
would perform the first iterations in binary32, and the last
ones in binary64, only. Figure 1 shows the relative error of
such a result compared to the full binary64 result, according
to the number of binary32 iterations. We can observe that at
most 458 iterations could be performed in binary32 before the
relative error exceeds the threshold of 10−6.

1The program is here decorated to be used by our tool.
2Exact value in binary64 is 5629499534213025 · 2−49.
3Exact value in binary32 is 20971800 · 2−21.

constraint

loop
transformation

configurations maximum subset of
transformations

DD
+

fp2mp

Figure 2: Workflow of our auto-tuning tool.

Now to push this idea to the limit, we can fully unroll this
loop, thus resulting in a program of 1000 distinct instructions.
Then by using the delta-debugging algorithm presented in
Section III-D, we can isolate 526 instructions out of these
1000 that can be transformed while maintaining the relative
error below the threshold of 10−6.

Both of these results offer a huge improvement, but they
remain untrackable by existing tools. Therefore this justifies
the interest of auto-tuning tools that consider the iterative
nature of programs, like the one presented in this article.

III. AUTO-TUNING TOOL FOR ITERATIVE PROGRAMS

Our goal is to develop a dynamic auto-tuning tool that consid-
ers the iterative nature of scientific computing routines. The
originality of our approach is that it relies on compilation
techniques, including loop splitting and unrolling, to increase
the number of instructions to be targeted in the program, with-
out modifying its semantics, and consequently to increase the
number of possible configurations. Then these configurations
are exposed to the delta-debugging algorithm, to isolate a more
relevant one, meaning one that allows to keep an acceptable
output accuracy. And each time a configuration is considered,
its impact on output accuracy is evaluated using multiple-
precision through the fp2mp tool.

This section starts with an overview of its general workflow.
Then it explains the different components of this flow, before
going back to motivating example.

A. General workflow

Our tool is a command-line tool written in Python, and
that requires a program together with a constraint. In this
program, the loop to be tuned is pointed out by a new
pragma we have introduced in the LLVM front-end, as shown
in Listing 1. Moreover, the command-line gives also to the
user the capability of selecting the formats including standard
floating-points formats (i.e. binary16, binary32, and binary64)
and bfloat16, as well as the strategy (i.e. splitting or unrolling)
used in the tuning process and detailed in Section III-B. Then it
works iteratively, by reducing the format of each instruction to
the format immediately below it in the list of selected formats.
It then repeats this step, as long as format adaptations are
possible. Thus, it allows to mix several formats, and not only
two, in the same program.

The general flow of our tool is given in Figure 2. As most
dynamic tool, ours uses a trial-and-error strategy. Precisely, it
proceeds in 3 main steps:

1) First, it starts by applying loop transformations on the
input. These transformations are guided by hints given
by the user through command-line parameters, and they
currently include loop splitting and unrolling. This step
outputs a modified LLVM intermediate representation.

2) Second, for each floating-point instruction of the pro-
grams, it inserts in this LLVM IR the equivalent com-
putation in multiple-precision. This is done using the
fp2mp tool, as explained in Section III-E. This tool
outputs also a list of MPFR objects, whose precision
can be further modified. This is used to build the
configuration sets as explained in Section III-C.

3) Third, using the delta-debugging algorithm, we deter-
mine a maximal subset of transformations that allows
to still obtain an acceptable output. This is explained in
Section III-D.

At the end of this process, we do not generate a new
optimized program, but we give some hints to the user on how
to produce it through a list of acceptable transformations.

B. Static loop transformations

The originality of our approach comes from the static loop
transformations applied on the original program. Their ob-
jective is to increase the number of possible transformations.
For doing this, our tool leverages the LLVM capabilities of
transforming programs.

LLVM is a set of tools and libraries that are used for com-
piler construction. One of its key features is its intermediate
representation, which serves as a high-level assembly language
that is portable across different platforms and architectures.
The LLVM IR is designed to be easily optimized by various
transformations during multiple passes. These passes allow
developers to perform various optimizations on the program,
such as unrolling loops, inlining functions, and vectorizing
programs. These optimizations can help to improve the per-
formance of a program, particularly for programs that have a
high degree of iterative or repetitive behavior.

In this project, we use the capability of unrolling loops
available in LLVM, and the one of splitting loops developed
by Revy [24]. These are both loop transformations that make
instructions appeared in the program, but without modifying
its semantics. Here we called strategy a combination of a loop
transformation and a factor. For example, on the program of
Listing 1, the strategy of unrolling loop by a factor of 2 gives
the following program,

for (int i = 1; i <= 500; i++) {
S = S + 0.01;
S = S + 0.01;

}

while the one of splitting the loop by a factor of 2 gives the
following one.

for (int i = 1; i <= 500; i++)
S = S + 0.01;

for (int i = 501; i <= 1000; i++)
S = S + 0.01;

This strategy is given to LLVM core by inserting appropriate
metadata in the LLVM IR.

These transformations allow for determining two differ-
ent patterns of transformations. Indeed the unrolling allows
the detection of some transformations appearing regularly
throughout the iterations. On the other hand, the splitting
allows detecting transformations that are relevant on a subset
of iterations, only (e.g. at the beginning, at the end, ...).

Note that this approach is a bit antagonist to the existing
ones. Indeed the current trend is to reduce the combinatorics
of targeted instructions to speed up the process: the fewer
the possible instructions, the less configurations to test, and
the faster the tuning process. This is actually done in Blame
or HiFPTuner that reduce the combinatorics compared to
Precimonious, for example. Conversely, in our approach, we
increase this combinatorics, but in a reasonable way. Doing
this way, we certainly increase the time necessary for the
process to converge, but we significantly improve the quality
of this process, as illustrated in Section IV.

C. Building transformation sets

This section deals with the way used to build the set of possible
transformations. This set is given to the delta-debugging to
determine the final configuration.

Once the loop transformation is performed, and the fp2mp
is run on the modified LLVM IR, we get a list of MPFR objects
for each function. This list corresponds to all the floating-point
elements of the input program (i.e. variables, constants, and
operations). It is given in a JSON file, whose entries are like
the one below.
{
"name": "add.mpfr",
"fp_name": "add",
"fp_type": "double",
"precision": "53",
"tuned": "true",
"location": {"line": "12", "column": "11"},
"op_code": "fadd",
"block": "for.body",
"loops": [{"name": "for.cond", "depth": "1"}]

}

Hence for each of them, it contains especially its floating-
point type and its precision, its location, and possibly the loop
it belongs to in the program.

Using this information, it is possible to build a list of
possible transformations. In our case, we target floating-point
instructions. Hence a transformation is a tuple composed of
an instruction and a list of formats, all lower than the format
of the instruction itself and ordered by decreasing precision.
They correspond to the formats to which the tool will try to
reduce the instructions. For example, if the user ask for using
binary16, binary32, and binary64, for the addition add below,
we will have the following list of possible transformations.

add -> [b32, b16]

This means that the tool will start by trying to reduce the
format of the add instruction to the binary32 format. If it
succeeds, it will then try to reduce it to the binary16 format.

For performance purposes, when the splitting strategy is
used, it can make sense to use the same format for all
the instructions in a loop. In this sense, we implemented

✓

✗

✗ ✗

✓

not tested

Figure 3: Delta-Debugging workflow.

another way to define transformation sets, by grouping all the
instructions of a loop body in the same set and by assigning
a unique set of possible target formats to this group. This is
used for example in Sections IV-B and IV-C.

D. The delta-debugging algorithm

The delta-debugging algorithm, developed by Zeller and
Hildebrandt, was initially designed for the simplification of
test cases. This is a process of reducing the complexity of a
test case while still maintaining the ability to expose a bug.
This is useful in debugging because it can help to isolate the
cause of a bug, making it easier to fix. Its workflow is given
in Figure 3. It is implemented in a tool called ddmin which is
widely used and it has been proven to be effective in reducing
the size of test cases for many types of bugs. It works like
a binary search to determine a 1-minimal set ∆✓ of changes
that reproduces the bug. This means that removing only one
change from ∆✓ makes the bug go away.

Several works have been published to adapt it to specific use
cases. In the context of auto-tuning, it has been adapted to be
used by other tools, like for example Precimonious or Promise.
In our case, we use ddmax, a variant of the delta-debugging
ddmin routine [25]. Given a set ∆ of possible transformations,
its goal is to maximize the subset ∆✓ of the input set ∆ that
makes the initial program still computing an acceptable output.
At the end of the algorithm, ∆✓ is 1-maximal, which means
that adding one transformation in ∆✓ will make the accuracy
test failed. Actually ddmax uses the same techniques as ddmin:
maximizing ∆✓ can be done by systematically minimizing
∆−∆✓, starting with large differences and then smaller and
smaller ones, until every remaining differences would cause
∆✓ to produce unacceptable output.

From an implementation point of view, our tool relies on the
DD Python module.4 This provides a class that implements the
delta-debugging algorithm. In order to adapt it to our needs,
we have overloaded the test() method. It is in charge of
testing whether a configuration of transformations allows to
satisfy the input constraint or not. For doing this, it modifies
the precision of the corresponding MPFR objects in the LLVM
IR using the update module of fp2mp.

E. The fp2mp verification tool

Dynamic auto-tuning tools often rely on a trial-and-error
strategy, for a dataset for which a reference result is known.

4See https://github.com/grimm-co/delta-debugging/.

Particularly, they iteratively apply transformations on the input
until the accuracy test fails. For doing this, this test procedure
uses a module to evaluate the impact on the output accuracy
of some transformations on the input program.

In our case, we use multiple-precision computations. Par-
ticularly, our auto-tuning process relies on the fp2mp tool.
This tool is designed for experimentation with floating-point
precision in computer programs. It works by duplicating in the
LLVM IR each floating-point instruction used in a program
with its equivalent in multiple-precision through the MPFR
library. This allows the user to define the precision they desire,
and to evaluate the impact of these precision modifications on
the behavior of the program.

The interest of fp2mp in our approach is that this module
offers the capability of adapting the precision of certain
computations only. Even if it works on LLVM IR, for a sake a
clarity, let us see how it would work at a C level. For example,
after having unrolled the loop by a factor of 2, Listing 1 would
be transformed as follows where Smpfr holds the equivalent
value of S but in MPFR.

double S = 0;
mpfr_t Smpfr;
mpfr_init2(Smpfr, 53);
mpfr_set_d(Smpfr, 0., MPFR_RNDN);
for(int i = 0; i <= 1000; i++) {

S = S + 0.01;
mpfr_add_d(Smpfr, Smpfr, 0.01, MPFR_RNDN);
S = S + 0.01;
mpfr_add_d(Smpfr, Smpfr, 0.01, MPFR_RNDN);

}
mpfr_clears(Smpfr, (mpfr_ptr) 0);

Hence adapting the precision of only the second addition to the
binary32 format, for example, would result in the following
piece of C code, where C1, C2 and C3 are three temporary
variables representing values in binary32, that is, in precision
24, to ensure the computation is done in precision 24, as well.

double S = 0;
mpfr_t Smpfr, C1, C2, C3;
mpfr_init2(Smpfr, 53);
mpfr_inits2(24, C1, C2, C3, (mpfr_ptr) 0);
mpfr_set_d(Smpfr, 0., MPFR_RNDN);
for(int i = 0; i <= 1000; i++) {

S = S + 0.01;
mpfr_add_d(Smpfr, Smpfr, 0.01, MPFR_RNDN);
S = S + 0.01;
mpfr_set(C1, Smpfr, MPFR_RNDN);
mpfr_set_flt(C2, 0.01f, MPFR_RNDN);
mpfr_add(C3, C1, C2, MPFR_RNDN);
mpfr_set(Smpfr, C3, MPFR_RNDN);

}
mpfr_clears(Smpfr, C1, C2, C3, (mpfr_ptr) 0);

F. Back to the motivating example

To reinforce the interest of our tool, let us now go back to the
motivating example of Section II. Using a strategy of splitting
the loop by a factor of 20 would result in the following piece
of program.

int main(void) {
double S = 0;
for (int i = 1; i< = 50; i++)

S = S + 0.01;
for (int i = 51; i <= 100; i++)

S = S + 0.01;
// ...
for (int i = 951; i <= 1000; i++)

S = S + 0.01;
// ... |S - Soptim|/|S| < 1e-6 ?
check_reverse_rel_error(S, 1e-6);

return 0;
}

Hence we no longer have a single instruction, but 20 separate
ones. Assuming two formats (i.e. binary64 and binary32), the
combinatorics amounts to 220 = 1048576, meaning 1048576
possible configurations.

By running our tool, in this case, we found in about 10 sec.
9 instructions out of these 20 ones that could be transformed
so that the result of this transformed program remains at the
required threshold of 10−6. This means 45% of the instructions
are performed in binary32 arithmetic, which is actually a
significative improvement compared to existing methods. And
this result is not far from the one obtained by fully unrolling
the program in Section II. However, if the unroll strategy by
a factor of 20 would have been used, only 1 instruction out of
the 20 would have been isolated to be relevant, that is, only
5% of the instructions.

Therefore, the quality of the result directly depends on the
strategy used. However, finding the best strategy for a given
problem is a difficult task that we do not discuss in this article,
we leave this choice to the user.

IV. EXPERIMENTAL RESULTS

In this section, we presents some experimental results to show
the interest of our analysis techniques.

A. Impact of different strategies

In this first experiment, we use 5 iterative programs: the
sum problem from Listing 1 (1000 iterations), the riemann
and simpson methods that compute the integral of a function
(400 and 1000 iterations, respectively), the arclength algorithm
inspired from [11] and that computes the arc length of a
function (1000 iterations), and finally the nbody problem
inspired from [26] that predicts the individual motions of a
group of celestial objects interacting with each other gravita-
tionally (100 iterations). All these programs are implemented
in binary64 floating-point arithmetic, and we consider reducing
the precision of instructions to the binary32. For doing this,
for each problem, we ran our auto-tuning tool with different
strategies and different thresholds. For all the problems, the
threshold considered is the relative error of the result computed
by the transformed program compared to the one in binary64
(which is considered as the “exact” result), but for nbody
where the threshold is the absolute distance between the 3D
coordinates computed by the transformed program and the
ones by the original one. Tables I and II show the impact of
using our approach. In these tables, “delta-debugging” means
the delta-debugging is applied without loop transformations,
like other tools would have done. Moreover, for each problem,
these give the number of binary64 and binary32 instructions,
together with the transformation percentage.

We observe that in all cases, applying static loop trans-
formations allow to improve the quality of the tuning result.
For example, let us consider the arclength problem and the
splitting strategy. For a threshold of 10−8, the delta-debugging
alone found 5 out of the 11 instructions of the main loop

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

splitting factor

0
50

100
150
200
250
300
350
400

ite
ra

tio
ns

(a) threshold of 10−8

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

splitting factor

0
50

100
150
200
250
300
350
400

ite
ra

tio
ns

(b) threshold of 10−9

Figure 4: Iteration patterns for the riemann method and different splitting factors.

that can be transformed, i.e. 45.5%. Splitting the loop into 50
subloops increases the combinatorics: now 550 instructions
are available in the program, i.e. 250 possible configurations.
Applying the delta-debugging on it allows to achieve 87.1%
of transformations, i.e. 479 instructions among these 550 ones,
which is a huge improvement. And the improvement is even
better for sharper thresholds. Still on arclength problem and
splitting strategy by a factor of 50, for a threshold of 10−11,
no solution is found by applying only the delta-debugging,
while our solution found 59 instructions out of the 550 to be
tuned, i.e. 10.7%. The same holds for other problems, and
the improvement can be even better, like for riemann method
and a threshold of 10−8, where the unrolling strategy is used
with a factor of 50. In this case, almost all the instructions
are transformed (i.e. 99.2%), while the delta-debugging alone
isolates only 40% of the instructions.

However, whatever the strategy, the higher the factor, the
greater the number of instructions in the transformed program,
and therefore the more important the combinatorics. In this
case, the tuning time also increases. For example, still on the
example of arclength problem and splitting strategy, the tuning
time goes from a few seconds to several tens of minutes for a
factor of 50 (i.e. 19 min. for a threshold of 10−8 to 48 min. for
10−11). But this can be contained: for example, for a factor
of 20, the tuning time does not exceed 10 min.

B. Same transformations for the whole loop body

From a performance point of view, it is better to have
instructions of the same format in a given loop body. For
example, it helps in activating some compiler optimizations
like vectorization [14]. Hence, in this experiment, we ran our
auto-tuning tool by forcing all the instructions of a same
loop to be in the same format. (This does not make sense
for unrolling strategy, but only for splitting strategy.) We did
this experiment for the riemann problem, for a splitting factor
ranging from 1 to 30. Figure 4 shows the results for a threshold
of 10−8 and 10−9, where the iterations in binary32 are in blue,
and the ones in binary64 are in red.

As expected, we observe that the value of the splitting factor
impacts the number of instructions transformed. For example,
in Figure 4a, for a threshold of 10−8, and for a factor in {1, 2},

no transformation is found and all the iterations are in binary64
arithmetic. For a factor of 3, the first third of iterations (i.e.
133 iterations) are transformed in binary32, while the two last
thirds remain in binary64. And this ratio increases with the
value of the splitting factor. The same holds for a threshold
of 10−9 in Figure 4b, but since the threshold is sharper, the
number of binary32 iterations is lower.

Note in this experiment that, as mentioned in Section III-B,
the splitting strategy helps to find patterns where the transfor-
mations appear at the beginning of all the iterations.

C. Auto-tuning of unbounded loops

In the previous experiments, the constraint was on the accuracy
of the output. The constraint can also relate to the number of
iterations, for example, which is particularly interesting in the
case of unbounded loops. In this third experiment, we consider
the conjugate gradient given in Algorithm 1. This is a well-
known algorithm to solve the linear system A · x = b in the
case of symmetric definite-positive matrices. It iterates as long
as the residual∥rk∥ is greater than a given threshold. And it is
actually known to be extremely sensitive to the computation
precision, which impacts directly this number of iterations.

For this last experiment, we use the 494_bus matrix from
the Suite Sparse Matrix Collection [27], where b is so that the
solution x is a vector of ones, and we ran the algorithm with
a threshold of 10−6 on the residual. Implemented in binary64,
it requires 1315 iterations to converge, while in binary32 this
number of iterations scales to 2494. The objective was to find
in the binary64 version of the program some iterations that

Algorithm 1 Conjugate Gradient method.
1: r0 := p0 := b−Ax0, and k = 0
2: while ∥rk∥ ≥ ϵ and k < maxiter do
3: αk :=

rTk rk
pT
k Apk

4: xk+1 := xk + αkpk
5: rk+1 := rk − αkApk

6: βk :=
rTk+1rk+1

rTk rk
7: pk+1 := rk+1 + βkpk
8: k = k + 1
9: end while

Program Threshold delta-debugging split / factor = 10 split / factor = 20 split / factor = 50
b64 b32 % h:m:s b64 b32 % h:m:s b64 b32 % h:m:s b64 b32 % h:m:s

sum 1e-5 1 0 0.0 0:00:01 5 5 50.0 0:00:06 9 11 55.0 0:00:14 22 28 56.0 0:00:43
1e-6 1 0 0.0 0:00:01 6 4 40.0 0:00:07 11 9 45.0 0:00:12 27 23 46.0 0:00:48
1e-7 1 0 0.0 0:00:01 9 1 10.0 0:00:09 17 3 15.0 0:00:17 43 7 14.0 0:00:59
1e-8 1 0 0.0 0:00:01 10 0 0.0 0:00:09 20 0 0.0 0:00:17 48 2 4.0 0:01:08

riemann 1e-8 3 2 40.0 0:00:04 15 35 70.0 0:00:41 16 84 84.0 0:00:59 10 240 96.0 0:01:44
1e-9 3 2 40.0 0:00:04 22 28 56.0 0:00:53 42 58 58.0 0:01:52 14 236 94.4 0:02:04
1e-10 4 1 20.0 0:00:04 29 21 42.0 0:01:14 63 37 37.0 0:02:16 19 231 92.4 0:02:22
1e-11 5 0 0.0 0:00:04 44 6 12.0 0:01:05 80 20 20.0 0:03:17 19 231 92.4 0:02:31

arclength 1e-8 6 5 45.5 0:00:10 31 79 71.8 0:02:32 40 180 81.8 0:04:54 71 479 87.1 0:19:05
1e-9 8 3 27.3 0:00:10 64 46 41.8 0:02:48 90 130 59.1 0:07:23 131 419 76.2 0:24:57
1e-10 9 2 18.2 0:00:10 86 24 21.8 0:03:15 135 85 38.6 0:07:00 130 420 76.4 0:31:00
1e-11 11 0 0.0 0:00:09 105 5 4.5 0:02:28 203 17 7.7 0:08:47 491 59 10.7 0:48:38

simpson 1e-7 4 6 60.0 0:00:06 18 82 82.0 0:01:42 4 196 98.0 0:00:33 14 486 97.2 0:02:13
1e-8 5 5 50.0 0:00:05 34 66 66.0 0:02:11 44 156 78.0 0:05:16 77 423 84.6 0:18:20
1e-9 6 4 40.0 0:00:09 58 42 42.0 0:02:28 48 152 76.0 0:05:19 182 318 63.6 0:27:20
1e-10 9 1 10.0 0:00:09 60 40 40.0 0:03:14 117 83 41.5 0:07:28 291 209 41.8 0:33:14
1e-11 10 0 0.0 0:00:09 91 9 9.0 0:03:21 178 22 11.0 0:08:28 439 61 12.2 0:41:46

nbody 1e-7 9 15 62.5 0:00:19 7 233 97.1 0:03:05 4 476 99.2 0:03:22 2 1198 99.8 0:02:16
1e-8 16 8 33.3 0:00:27 59 181 75.4 0:06:06 84 396 82.5 0:17:04 35 1165 97.1 0:34:06
1e-9 20 4 16.7 0:00:29 130 110 45.8 0:10:32 152 328 68.3 0:28:42 176 1024 85.3 2:06:18
1e-10 21 3 12.5 0:00:27 212 28 11.7 0:08:17 386 94 19.6 0:34:07 742 458 38.2 5:12:40
1e-11 24 0 0.0 0:00:24 228 12 5.0 0:07:26 443 37 7.7 0:26:53 1062 138 11.5 2:34:49
1e-12 24 0 0.0 0:00:25 237 3 1.2 0:08:09 474 6 1.2 0:21:14 1160 40 3.3 3:03:27

Table I: Auto-tuning results for splitting strategy.

Program Threshold delta-debugging unroll / factor = 10 unroll / factor = 20 unroll / factor = 50
b64 b32 % h:m:s b64 b32 % h:m:s b64 b32 % h:m:s b64 b32 % h:m:s

sum 1e-5 1 0 0.0 0:00:01 6 4 40.0 0:00:08 11 9 45.0 0:00:16 25 25 50.0 0:00:40
1e-6 1 0 0.0 0:00:01 10 0 0.0 0:00:08 19 1 5.0 0:00:16 45 5 10.0 0:00:54
1e-7 1 0 0.0 0:00:01 10 0 0.0 0:00:09 20 0 0.0 0:00:15 48 2 4.0 0:00:56
1e-8 1 0 0.0 0:00:01 10 0 0.0 0:00:08 20 0 0.0 0:00:16 48 2 4.0 0:00:54

riemann 1e-8 3 2 40.0 0:00:04 19 31 62.0 0:00:29 11 89 89.0 0:01:09 2 248 99.2 0:02:00
1e-9 3 2 40.0 0:00:04 25 25 50.0 0:00:46 53 47 47.0 0:02:04 43 207 82.8 0:04:39
1e-10 4 1 20.0 0:00:04 33 17 34.0 0:00:39 88 12 12.0 0:02:17 82 168 67.2 0:10:12
1e-11 5 0 0.0 0:00:04 44 6 12.0 0:01:02 88 12 12.0 0:02:18 213 37 14.8 0:07:36

arclength 1e-8 6 5 45.5 0:00:10 32 78 70.9 0:01:40 40 180 81.8 0:04:18 67 483 87.8 0:12:50
1e-9 8 3 27.3 0:00:10 31 79 71.8 0:02:39 125 95 43.2 0:07:12 80 470 85.5 0:22:54
1e-10 9 2 18.2 0:00:10 93 17 15.5 0:02:48 180 40 18.2 0:06:00 378 172 31.3 0:51:03
1e-11 11 0 0.0 0:00:09 110 0 0.0 0:01:57 210 10 4.5 0:06:38 509 41 7.5 0:27:58

simpson 1e-7 4 6 60.0 0:00:06 10 90 90.0 0:00:39 15 185 92.5 0:01:11 23 477 95.4 0:03:09
1e-8 5 5 50.0 0:00:05 47 53 53.0 0:01:26 28 172 86.0 0:03:25 47 453 90.6 0:04:47
1e-9 6 4 40.0 0:00:09 56 44 44.0 0:01:24 112 88 44.0 0:03:36 179 321 64.2 0:18:18
1e-10 9 1 10.0 0:00:09 62 38 38.0 0:01:53 117 83 41.5 0:07:01 275 225 45.0 0:18:30
1e-11 10 0 0.0 0:00:09 95 5 5.0 0:02:23 182 18 9.0 0:06:02 413 87 17.4 0:39:05

nbody 1e-7 9 15 62.5 0:00:19 36 204 85.0 0:02:33 14 466 97.1 0:02:33 4 1196 99.7 0:07:55
1e-8 16 8 33.3 0:00:27 66 174 72.5 0:06:19 80 400 83.3 0:10:44 58 1142 95.2 0:52:36
1e-9 20 4 16.7 0:00:29 158 82 34.2 0:09:49 194 286 59.6 0:47:44 181 1019 84.9 3:13:32
1e-10 21 3 12.5 0:00:27 206 34 14.2 0:09:28 395 85 17.7 0:32:58 900 300 25.0 2:33:01
1e-11 24 0 0.0 0:00:24 228 12 5.0 0:08:29 455 25 5.2 0:22:35 1046 154 12.8 3:51:45
1e-12 24 0 0.0 0:00:25 238 2 0.8 0:06:16 471 9 1.9 0:25:52 1176 24 2.0 1:35:16

Table II: Auto-tuning results for unrolling strategy.

could be transformed into binary32 so that the total number
of iterations remains no larger than a user-defined bound.

For doing this, we ran our tool by forcing all the instructions
of the main loop to be in the same format, as in Section IV-B.
And we repeated this for a splitting factor ranging from 2
to 20. Figure 5 shows the results for a number of iterations
bounded by 1500 and 1800.

Our tool allows to find automatically some iterations to be
transformed in binary32 arithmetic. For example, for a splitting
factor of 2, we obtained two loops in binary64 arithmetic, of
657 and 658 iterations, respectively. Then if we bound the
total number of iterations to 1500 (Figure 5a), no iteration
can be lowered in binary32, and all the 1315 iterations remain
in binary64 (in red in the figures). However, if we bound the
number of iterations to 1800 (Figure 5b), the tool found that
the second loop can be performed in binary32 (in blue in the
figures). However, since the computation precision impacts the

number of iterations, lowering the precision of instructions in
the second loop makes its number of iterations increased. It
scales to 1046, for a total of 1703 iterations, which is still
below the bound.

V. CONCLUSION

This article addresses the tuning of precision in iterative
routines. We have designed an auto-tuning tool that relies on
compiler capabilities and not on the user action to improve
the tuning process. Particularly, it applies static loop trans-
formations on the original program to increase the number
of instructions appearing in the program and thus to yield
better solutions. We showed on some examples, that it helps to
improve significantly the existing solutions, even in the case of
unbounded loops, to the detriment of an increase in the tuning
time. A direct extension would be to give the capability to user
of combining both these loop transformations.

2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

splitting factor

0
250
500
750

1000
1250
1500
1750
2000

ite
ra

tio
ns

(a) number of iterations bounded by 1500

2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

20

splitting factor

0
250
500
750

1000
1250
1500
1750
2000

ite
ra

tio
ns

(b) number of iterations bounded by 1800

Figure 5: Increase of iteration numbers for the conjugate gradient and different splitting factors.

Now the research direction is threefold: First, it would be of
interest to measure the runtime of result programs to evaluate
the speedup delivered by our tool. Second, other static loop
transformations exist, and it could be interesting to investigate
their interest. For example, the loop peeling and versioning
lead also to a duplication of the instructions of the loop,
and they could be useful for our auto-tuning approach. Third,
we have applied our techniques on small routines embracing
simple loops or, in the case of the conjugate gradient, on the
main loop. It could be interesting to study how this approach
scales with the size of the loop body since instructions are
duplicated, and how it behaves on nested loops.

ACKNOWLEDGMENT

This work was supported by the PADOC ANR project under
grant n◦ANR-18-CE25-0004.

REFERENCES

[1] IEEE Computer Society, IEEE Standard for Floating-Point Arithmetic,
2019.

[2] J. L. Gustafson and I. T. Yonemoto, “Beating Floating Point at Its Own
Game: Posit Arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, p. 71–86, 2017.

[3] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov, “Accelerating scientific computations with
mixed precision algorithms,” Computer Physics Communications, vol.
180, no. 12, pp. 2526 – 2533, 2009.

[4] A. Izycheva and E. Darulova, “On Sound Relative Error Bounds for
Floating-Point Arithmetic,” in 17th Conference on Formal Methods in
Computer-Aided Design, 2017, p. 15–22.

[5] E. Darulova, A. Izycheva, F. Nasir, F. Ritter, H. Becker, and R. Bastian,
“Daisy - Framework for Analysis and Optimization of Numerical
Programs,” in Tools and Algorithms for the Construction and Analysis
of Systems, D. Beyer and M. Huisman, Eds., 2018, pp. 270–287.

[6] W.-F. Chiang, M. Baranowski, I. Briggs, A. Solovyev, G. Gopalakr-
ishnan, and Z. Rakamarić, “Rigorous Floating-Point Mixed-Precision
Tuning,” in POPL 2017, 2017, pp. 300–315.

[7] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan,
“Rigorous Estimation of Floating-Point Round-off Errors with Symbolic
Taylor Expansions,” in FM 2015, 2015, pp. 532–550.

[8] M. Martel, “Floating-Point Format Inference in Mixed-Precision,” in 9th
NASA Formal Methods Symposium., 2017.

[9] M. O. Lam, J. K. Hollingsworth, B. R. de Supinski, and M. P. Legendre,
“Automatically adapting programs for mixed-precision floating-point
computation,” in ICS’13, 2013, pp. 369–378.

[10] M. O. Lam and J. K. Hollingsworth, “Fine-grained floating-point preci-
sion analysis,” vol. 32, no. 2, 2018, pp. 231–245.

[11] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: tuning
assistant for floating-point precision,” in SC’13, 2013, pp. 1–12.

[12] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-
Inducing Input,” IEEE Transactions on Software Engineering, pp. 183–
200, 2002.

[13] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Ka-
han, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough, “Floating-point
precision tuning using Blame analysis,” in ICSE 2016, 2016, pp. 1074–
1085.

[14] H. Guo and C. Rubio-González, “Exploiting Community Structure for
Floating-Point Precision Tuning,” in 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. Association for Com-
puting Machinery, 2018, p. 333–343.

[15] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuilière, “Auto-
tuning for floating-point precision with Discrete Stochastic Arithmetic,”
Journal of Computational Science, vol. 36, p. 101017, 2019.

[16] F. Févotte and B. Lathuilière, “Debugging and optimization of HPC
programs with the Verrou tool,” in International Workshop on Software
Correctness for HPC Applications (Correctness), 2019, pp. 1–10.

[17] F. Jézéquel and J.-M. Chesneaux, “CADNA: a library for estimating
round-off error propagation,” Computer Physics Communications, pp.
933–955, 2008.

[18] H. Menon, M. O. Lam, D. Osei-Kuffuor, M. Schordan, S. Lloyd,
K. Mohror, and J. Hittinger, “ADAPT: Algorithmic Differentiation
Applied to Floating-Point Precision Tuning,” in International Conference
for High Performance Computing, Networking, Storage, and Analysis.
IEEE Press, 2018.

[19] B. Saiki, O. Flatt, C. Nandi, P. Panchekha, and Z. Tatlock, “Combining
Precision Tuning and Rewriting,” in 28th IEEE Symposium on Computer
Arithmetic (ARITH 2021), 2021, pp. 1–8.

[20] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock, “Automat-
ically improving accuracy for floating point expressions,” in PLDI’2015,
2015, pp. 1–11.

[21] Y. Chatelain, E. Petit, P. De Oliveira Castro, G. Lartigue, and D. Defour,
“Automatic Exploration of Reduced Floating-Point Representations in
Iterative Methods,” in 25th International Conference Euro-Par 2019
Parallel Processing, 2019, pp. 481–494.

[22] H. Brunie, C. Iancu, K. Z. Ibrahim, P. Brisk, and B. Cook, “Tun-
ing Floating-Point Precision Using Dynamic Program Information and
Temporal Locality,” in SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, 2020, pp. 1–14.

[23] R. Gu, P. Beata, and M. Becchi, “A Loop-Aware Autotuner for High-
Precision Floating-Point Applications,” in International Symposium on
Performance Analysis of Systems and Software (ISPASS 2020), 2020,
pp. 285–295.

[24] G. Revy, “Analyzing the impact of floating-point precision adaptation
in iterative programs,” in 2021 IEEE 28th Symposium on Computer
Arithmetic (ARITH), 2021, pp. 25–32.

[25] L. Kirschner, E. Soremekun, and A. Zeller, “Debugging Inputs,” in 2020
IEEE/ACM 42nd International Conference on Software Engineering
(ICSE), 2020, pp. 75–86.

[26] D. Ben Khalifa and M. Martel, “A study of the floating-point tuning
behaviour on the n-body problem,” in Computational Science and Its
Applications – ICCSA 2021. Springer International Publishing, 2021,
pp. 176–190.

[27] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software, vol. 38, 2011.

