
Towards a correctly-rounded and fast
power function in binary64 arithmetic

Tom Hubrecht
Département d’Informatique de l’ENS

École Normale Supérieure,
CNRS, PSL University
F-75005 Paris, France
tom.hubrecht@ens.fr

Claude-Pierre Jeannerod
Inria, Université de Lyon
CNRS, ENSL, UCBL, LIP

F-69342 Lyon, France
claude-pierre.jeannerod@inria.fr

Paul Zimmermann
Université de Lorraine
CNRS, Inria, LORIA
F-54000 Nancy, France

paul.zimmermann@inria.fr

Abstract—We design algorithms for the correct rounding
of the power function xy in the binary64 IEEE 754 format,
for all rounding modes, modulo the knowledge of hardest-to-
round cases. Our implementation of these algorithms largely
outperforms previous correctly-rounded implementations and is
not far from the efficiency of current mathematical libraries,
which are not correctly-rounded. Still, we expect our algorithms
can be further improved for speed. The proofs of correctness
are fully detailed in the extended version [9] of this paper, with
the goal to enable a formal proof of these algorithms. We hope
this work will motivate the next IEEE 754 revision committee to
require correct rounding for mathematical functions.

Index Terms—IEEE 754, double precision, binary64 format,
power function, correct rounding, efficiency.

I. INTRODUCTION

The IEEE standard for floating-point arithmetic requires
correct rounding for basic arithmetic operations since 1985,
but in its latest revision (IEEE 754-2019) [10], it still does not
require correct rounding for the most common mathematical
functions such as log, exp, sin, cos, etc.

Among all these commonly used functions, one of the
trickiest ones to implement is the power function (x, y) 7→ xy .
One difficulty is that it is a bivariate function, thus it has
many more possible inputs for a given IEEE format, and in
particular its hardest-to-round cases are not known yet for the
binary64 format (formerly called ’double precision’ and where
the precision is 53). Another difficulty of the power function
is that it has many exact and midpoint cases (that is, cases
where xy is exactly representable in precision 54). Finally, as
the relation xy = by logb x for b > 1 and x > 0 shows, the
power function grows very fast in some regions. This requires
that some intermediate steps be performed with a significant
amount of extra precision which however must be kept small
enough in order to achieve high efficiency in practice.

Current mathematical libraries do not provide a correctly
rounded power function for the binary64 format. For this
format, the maximal known error goes from 0.523 ulp for
the GNU libc to 636 ulps for OpenLibm [11].

A. State of the Art

Detailed descriptions of how to implement the power func-
tion are given in Markstein’s book [18, Chapter 12] and

Beebe’s book [1, Chapter 14]. Markstein suggests using the
formula xy = 2y log2 x, a choice already advocated in [3].
We tried this approach first as it looked quite promising for
binary arithmetic, but in our context it turned out to be less
efficient than using the relation xy = ey log x, essentially
since the Taylor approximations of log x and ex have simpler
coefficients. Beebe also suggests evaluating xy by means
of 2y log2 x for binary arithmetic. His algorithms are more
complex, in particular since the fused multiply-add (FMA)
instruction is not used for producing exact products. Finally,
none of these two chapters discusses ways to ensure correct
rounding.

The MathLib library [23] includes a correctly rounded
power function for the binary64 format. However, the algo-
rithm used is not fully detailed, and MathLib is no longer
maintained. Some MathLib routines (including the power
function) were included in the GNU libc up to release 2.27,
but the “slow path” was gradually removed, and the latest
release of the GNU libc does no longer provide a correctly
rounded power [11]. Furthermore, MathLib only provides
correct rounding for rounding to nearest-even.

Sun Microsystems developed a library called LIBMCR
that included in its latest version (release 0.9, April 2004)
seven functions with claimed correct rounding (presumably
for rounding to nearest-even): exp, log, pow, atan, sin, cos,
tan. LIBMCR still compiles with modern compilers but has
both efficiency and correctness issues (see §VI).

CRLIBM [4] also provides a correctly rounded power
function. Like for MathLib, this function is only implemented
for rounding to nearest-even. Also, this function has remained
tagged as “experimental” and has indeed some correctness
issues (see §VI). Compared to MathLib, though, CRLIBM has
a better treatment of exact cases and midpoint cases, based on
works by Lauter and Lefèvre [13], [14].

More recently, the RLIBM project [16], the LLVM C
Library [17], and the CORE-MATH project [19] have pro-
posed implementations for various correctly-rounded func-
tions. However, at the time of writing, RLIBM only provides
binary32 functions, LLVM libc only provides the hypot and
log10 functions in binary64, and CORE-MATH provides
about 20 binary64 functions, but not xy .

B. Our Contributions

In this paper we present a new algorithm for the binary64
power function with correct rounding (modulo the knowledge
of hardest-to-round cases) together with a very efficient imple-
mentation. Compared to previous work (MathLib, LIBMCR,
and CRLIBM), this algorithm is not restricted to rounding to
nearest-even, but also works for the directed rounding modes
from IEEE 754.

Furthermore (and as far as we can tell), this is the first
time an algorithm for binary64 powering with correct rounding
is fully detailed and presented together with its rounding
error analysis. The algorithm, which makes heavy use of the
FMA instruction available on most modern processors, can be
readily implemented.

Finally, our C implementation of the algorithm yields a two-
fold to four-fold speedup with respect to MathLib, CRLIBM,
and LIBMCR.

C. Outline

The paper is organized as follows. Section II gives a high-
level description of our three-phase algorithm for computing
correctly-rounded powers for the IEEE binary64 format, to-
gether with some notation to be used later on. Section III then
provides a detailed description of all the building blocks and
algorithms used in the first phase of the powering algorithm,
together with explicit error bounds (each of which having
a detailed proof given in [9]). Section IV only provides a
coarse description of the second and third phases, since those
follow essentially the same approach as the first phase (up
to higher precisions, larger approximation polynomials, and
more sophisticated range reduction). Section V discusses the
correctness of our implementation on known worst cases as
well as on random inputs. Section VI compares our imple-
mentation to the MathLib, LIBMCR and CRLIBM libraries,
and to the incorrectly-rounded GNU libc power function. We
conclude and discuss further work in Section VII.

II. HIGH-LEVEL ALGORITHM

Before approximating xy using exp(y log x), the case x ≤ 0
gets a special treatment according to the IEEE 754-2019
specification [10, §9]. The same is done for the cases where
x or y is ±∞ or NaN. (See also [12, §F.10.4.5].) Thus, we
assume from now on that both x and |y| are in the range [α,Ω],
where α := 2−1074 denotes the smallest positive subnormal
binary64 number, and Ω := (1 − 2−53) · 21024 denotes the
largest finite binary64 number. Then, clearly, log x is either
zero or in a subrange of the range [−Ω,−2−1022]∪[2−1022,Ω]
of normal binary64 numbers.

Our powering algorithm has three phases. A first phase
approximates xy using double-double arithmetic (§III) in a
very efficient way; if the rounding test of the first phase fails,
then a second phase approximates xy using 128-bit arithmetic
(§IV); if the rounding test of the second phase fails again,
then a third phase approximates xy using 256-bit arithmetic
(§IV). Since worst cases for the binary64 power function
are still unknown, the third phase contains a final rounding

test. In the very unlikely event where this last test fails, an
error message is printed, which guarantees that no incorrect
rounding is produced.

The three phases use the same algorithm:
• first we compute an approximation of log x, by first

rewriting x = 2e · t with
√
2/2 < t <

√
2. Then we

use Tang’s algorithm [21]: a table value r approximates
1/t and yields a small value z ≈ r · t − 1. Finally
we get log x ≈ e log 2 − log r + log(1 + z), where
an approximation to log r is read from a table and
where log(1 + z) is approximated using a small-degree
polynomial;

• then we multiply the approximation of log x by y, ob-
taining a value called r;

• finally we approximate exp(r) by writing r = (k +
i/2n) log 2+z, where k is an integer, i/2n is a small ratio-
nal, and z is small. This yields exp(r) = 2k·2i/2n ·exp(z),
where an approximation to 2i/2

n

is read from a table
and where exp(z) is approximated using a small-degree
polynomial.

A. Notation and basic properties

We write Z, N, F to denote the set of integers, nonnegative
integers, and finite binary64 numbers, respectively. We write
ulp(x) to denote the unit in the last place of x ∈ F, which for
x ̸= 0 gives the weight of the last bit of the significand of x.
More generally, for any real number x such that |x| ≤ Ω, we
define its ulp as ulp(x) := 2max(−1022,⌊log2 |x|⌋)−52, that is,
max(α, 2⌊log2 |x|⌋−52), with the convention that ulp(0) = α.

We denote by ◦ the current rounding mode, which can be to
nearest with ties to even, toward zero, toward +∞, or toward
−∞. Our algorithm is division free and makes heavy use of
operations of the form

t← ◦(xy + z),

with a single rounding; in practice, such operations are per-
formed efficiently by fused multiply-add (FMA) instructions.
Unless stated explicitly, all variables such as x, y, z, t above
represent finite binary64 numbers.

Our error bounds will be deduced in particular from the
following accuracy properties of ◦: when |xy + z| ≤ Ω, the
absolute error of t is bounded as

|t− (xy + z)| ≤ ulp(xy + z) ≤ ulp(t);

if in addition |xy + z| ≥ 2−1022 (normal range), then the
relative error satisfies |t/(xy+z)−1| ≤ ulp(xy+z)/|xy+z|
and is thus always at most 2−52. Finally, in some proofs we
shall also exploit the fact that if |xy + z| ≤ 2e for some
integer e ≥ −1021, then |t− (xy+ z)| ≤ 0.5 ·ulp(2e) instead
of ≤ ulp(2e).

III. FIRST PHASE

The first phase uses double-double arithmetic for efficiency,
and delivers an approximation to xy with about 63 correct bits
in the general case (see Algorithm 9). The only special cases
are those discussed earlier: the cases y ∈ {0, 1/2, 1, 2} are

only checked after the first phase, in order not to slow down
the critical path.

In the first phase we make heavy use of the following
ExactMul and FastTwoSum algorithms. In the absence of
underflow and overflow, ExactMul rewrites the exact product
of two finite binary64 numbers as a double-double value, that
is, as the unevaluated sum of two finite binary64 numbers.
The last instruction ℓ← ◦(ab− h) of ExactMul is efficiently

Algorithm 1 (ExactMul)
Input: a, b ∈ F
Output: h, ℓ such that h+ ℓ = ab

1: h← ◦(ab)
2: ℓ← ◦(ab− h)

implemented using an FMA. If ab ∈ αZ (that is, the exact
product ab is an integer multiple of α) and if |ab| ≤ Ω, then
h+ ℓ = ab exactly.

FastTwoSum rewrites the exact sum of two finite binary64
numbers as a double-double value whose first component
equals the rounded sum and whose second component is (an
approximation to) the associated rounding error.

Algorithm 2 (FastTwoSum)
Input: a, b ∈ F with a = 0 or |a| ≥ |b|
Output: h, ℓ such that h+ ℓ approximates a+ b

1: h← ◦(a+ b)
2: t← ◦(h− a)
3: ℓ← ◦(b− t)

In the absence of underflow and overflow, it is well known
that for rounding to nearest FastTwoSum is an error-free
transform, that is, h + ℓ = a + b exactly, while for directed
roundings we have in general only an approximation: h+ ℓ ≈
a+ b. It is shown in [22, Theorem 1] that the corresponding
approximation error satisfies |h+ ℓ− (a+ b)| ≤ 2−105|h| and
that it is zero when the exponent difference between a and b
does not exceed 53. (See also [8] for a weaker bound.) Also,
it is shown in [6, Theorem 3] that the middle computation
t← ◦(h− a) is always exact, whatever the rounding mode.

Besides FastTwoSum, we shall also use the following Fast-
Sum algorithm, which allows us to add an extra error term to
the low order term produced by FastTwoSum.

Algorithm 3 (FastSum)
Input: a, bh, bℓ ∈ F with a = 0 or |a| ≥ |bh|
Output: h, ℓ such that h+ ℓ approximates a+ bh + bℓ

1: h, t← FastTwoSum(a, bh)
2: ℓ← ◦(t+ bℓ)

Lemma 1: In the absence of underflow and overflow, the
pair (h, ℓ) computed by Algorithm FastSum satisfies∣∣h+ ℓ− (a+ bh + bℓ)

∣∣ ≤ 2−105|h|+ ulp(ℓ).

Proof: The error of FastSum is bounded by the sum of the
error of the FastTwoSum call, plus the rounding error in t+bℓ.

P = z − z2/2 + 0x1.5555555555558p-2 z3

− 0x1.0000000000003p-2 z4

+ 0x1.999999981f535p-3 z5

− 0x1.55555553d1eb4p-3 z6

+ 0x1.2494526fd4a06p-3 z7

− 0x1.0001f0c80e8cep-3 z8

Fig. 1. Degree-8 polynomial P (z) generated by Sollya [2] for approximating
log(1 + z) when |z| ≤ 33 · 2−13, with absolute error at most 2−81.63 and
relative error at most 2−72.423.

The first one is bounded by 2−105|h| from [22], and the second
one by ulp(ℓ).

Section III-A computes a double-double approximation h+ℓ
of log x, which is multiplied by y in Section III-B to obtain
a double-double approximation rh + rℓ of y log x, and a
double-double approximation of exp(rh + rℓ) is obtained in
Section III-C. Finally Section III-D details how these three
steps are used in the first phase.

A. Approximation of log x

To approximate log x for x ∈ [α,Ω] a binary64 number,
after some argument reduction described below, we have to
approximate log(1 + z) for some binary64 number z such
that |z| ≤ 33 · 2−13. For this task, we use Algorithm p 1
which computes a double-double approximation ph + pℓ of
log(1 + z)− z, using a degree-8 polynomial (Fig. 1).

Algorithm 4 Algorithm p 1
Input: z ∈ F
Output: ph + pℓ approximating log(1 + z)− z

1: wh, wℓ ← ExactMul(z, z)
2: t← ◦(P8z + P7)
3: u← ◦(P6z + P5)
4: v ← ◦(P4z + P3)
5: u← ◦(twh + u)
6: v ← ◦(uwh + v)
7: u← ◦(vwh)
8: ph ← −0.5 · wh

9: pℓ ← ◦(uz − 0.5 · wℓ)

Lemma 2: Given |z| ≤ 33·2−13 with z an integer multiple of
2−61, the double-double approximation ph+pℓ to log(1+z)−z
returned by Algorithm p 1 satisfies

|ph + pℓ − (log(1 + z)− z)| < 2−75.492,

with |ph| < 2−16.9 and |pℓ| < 2−25.446. If z ̸= 0, and
assuming further |z| < 32 · 2−13, the relative error satisfies∣∣∣∣z + ph + pℓ

log(1 + z)
− 1

∣∣∣∣ < 2−67.441.

Proof: See [9, Appendix A-A], and refinement via |δ0|+|δ6| ≤
3.505u for the relative error in the case |z| < 32 · 2−13.

The approximation of log x is done using Algorithm 5.
First, x ∈ F ∩ [α,Ω] is written 2e · t with e ∈ Z and
t ∈ F ∩ (1/

√
2,
√
2). Then, following [15], [21], we reduce

the range of t even further by computing z = ◦(rt−1), where
r is a precomputed 9-bit approximation to 1/t obtained from
i = ⌊28t⌋, and denoted INVERSEi below. (The value of r is
explicitly defined in [9, Appendix A-B]; when i ∈ {255, 256},
we shall simply take r = 1 in order to avoid cancellation when
approximating log z − log r.) Note that z can be produced
efficiently using an FMA.

Lemma 3: For any t ∈ F ∩ (1/
√
2,
√
2), let i = ⌊28t⌋ and

r = INVERSEi. Then z = ◦(rt−1) is exact, |z| ≤ 33 ·2−13,
and z ∈ 2−61Z.
Proof: See [9, Appendix A-B].

In Lemma 3, it can be checked that the upper bound 33·2−13

is optimal if we want z = ◦(rt− 1) to be exact, when using
a table indexed by ⌊28t⌋.

In Algorithm log 1, the table value LOGINVi is a double-
double approximation ℓ1+ℓ2 to − log r, such that ℓ1 ∈ F is an
integer multiple of 2−42 nearest − log r, and ℓ2 ∈ F is nearest
(− log r)−ℓ1. Similarly, LOG2H+LOG2L is a double-double
approximation to log 2, to nearest and with LOG2H an integer
multiple of 2−42.

Algorithm 5 Algorithm log 1
Input: a binary64 value x ∈ [α,Ω]
Output: h+ ℓ approximating log x

1: write x = t · 2e with t ∈ (1/
√
2,
√
2) and e ∈ Z

2: i← ⌊28t⌋ ▷ i integer
3: r ← INVERSEi, ℓ1, ℓ2 ← LOGINVi

4: z ← ◦(rt− 1)
5: th ← ◦(eLOG2H + ℓ1)
6: tℓ ← ◦(eLOG2L + ℓ2)
7: h, ℓ← FastSum(th, z, tℓ)
8: ph, pℓ ← p 1(z)
9: h, ℓ← FastSum(h, ph, ◦(ℓ+ pℓ))

10: if e = 0 then h, ℓ← FastTwoSum(h, ℓ)

Lemma 4: Given x ∈ [α,Ω], Algorithm log 1 computes
(h, ℓ) such that |ℓ| ≤ 2−23.89|h|, and

|h+ ℓ− log x| ≤ εlog · | log x| (1)

with εlog = 2−73.527 if x ̸∈ (1/
√
2,
√
2), and εlog = 2−67.0544

otherwise.
Proof: If x = 1, then it is easy to see that e = 0, t = 1,
i = 256 thus r = 1 (remember for i ∈ {255, 256} we use
r = 1 to avoid cancellation), z = 0, so that Algorithm p 1
returns ph = pℓ = 0 and Algorithm log 1 returns h = ℓ = 0.
The proof is thus finished in this case.

Let us now assume x ̸= 1. Firstly, from the proof of
Lemma 3, the value z computed at line 4 fulfills the con-
ditions of Lemma 2. The main analysis of Algorithm log 1 is
performed in [9, Appendix A-C], where we distinguish three
cases:

1) case e ̸= 0, that is, x <
√
2/2 or

√
2 < x. This case is

detailed in [9, Appendix A-D];

2) case e = 0 and i ̸= {255, 256}, that is,
√
2/2 < x <

255/256 or 257/256 ≤ x <
√
2. This case is detailed

in [9, Appendix A-E];
3) case e = 0 and i ∈ {255, 256}, that is, 255/256 ≤ x <

257/256. This case is detailed in [9, Appendix A-F].

B. Multiplication by y

Once we have computed a double-double approximation
h + ℓ to log x, we multiply it by y in order to obtain an
approximation to y log x, as in Algorithm 6 below. As pointed
out in [18, Chapter 12], what is important is to bound the
absolute error in the approximation to y log x.

Algorithm 6 Algorithm mul 1
Input: a double-double value h+ ℓ, and a double y
Output: rh + rℓ approximating y(h+ ℓ)

1: rh, s← ExactMul(y, h)
2: rℓ ← ◦(yℓ+ s)

Lemma 5: If x, h, ℓ are as in Lemma 4 and if the exact
product yh satisfies 2−969 ≤ |yh| ≤ 709.7827, then Algo-
rithm 6 computes (rh, rℓ) such that |rh| ∈ [2−970, 709.79],
|rℓ| ≤ 2−14.4187, |rℓ/rh| ≤ 2−23.8899, |rh+ rℓ| ≤ 709.79, and

|rh + rℓ − y log x| ≤ εmul

with εmul = 2−63.799 if x ̸∈ (1/
√
2,
√
2), and εmul = 2−57.580

otherwise.
Proof: See [9, Appendix A-G].

C. Final exponentiation

Finally we approximate exp(rh+rℓ). After some argument
reduction described in Algorithm 8, we have to approximate
exp(z) for z a double-double value with |z| < 0.000130273.
(This bound comes from the paragraph “About the values zh
and zℓ” in [9, Appendix A-I].) We use a degree-4 polynomial
(Fig. 2), that is evaluated using Algorithm q 1.

Q = 1 + z + z2/2

+ 0x1.5555555995d37p-3 z3

+ 0x1.55555558489dcp-5 z4

Fig. 2. Degree-4 polynomial Q(z) generated by Sollya for approximating
exp(z) when |z| ≤ 0.000130273, with absolute error at most 2−74.346.

Lemma 6: Given (zh, zℓ) such that |zh+zℓ| < 0.000130273
and |zℓ| ≤ 2−42.7260, Algorithm q 1 returns (qh, qℓ) such that∣∣∣∣ qh + qℓ

exp(zh + zℓ)
− 1

∣∣∣∣ < 2−74.169053

and |ℓ| ≤ 2−42.7096.
Proof: See [9, Appendix A-H].

Algorithm 7 Algorithm q 1
Input: a double-double value zh + zℓ
Output: qh + qℓ approximating exp(zh + zℓ)

1: z ← ◦(zh + zℓ)
2: q ← ◦(Q4zh +Q3)
3: q ← ◦(qz +Q2)
4: h0, ℓ0 ← FastTwoSum(Q1, ◦(q · z))
5: h1, s← ExactMul(zh, h0)
6: t← ◦(zℓh0 + s)
7: ℓ1 ← ◦(zhℓ0 + t)
8: qh, qℓ ← FastSum(Q0, h1, ℓ1)

Algorithm 8 Algorithm exp 1
Input: a double-double value rh + rℓ
Output: eh + eℓ approximating exp(rh + rℓ)

1: ρ0 = -0x1.74910ee4e8a27p+9 ≈ −745.133
2: ρ1 = -0x1.577453f1799a6p+9 ≈ −686.909
3: ρ2 = 0x1.62e42e709a95bp+9 ≈ 709.78267
4: ρ3 = 0x1.62e4316ea5df9p+9 ≈ 709.78276
5: if ρ3 < rh then return eh = eℓ = Ω

6: if rh < ρ0 then return eh = α, eℓ = −α
7: if rh<ρ1 or ρ2<rh then return eh = eℓ = NaN

8: INVLN2← 0x1.71547652b82fep+12
9: k ← ⌊◦(rh · INVLN2)⌉ ▷ nearest integer

10: LN2H← 0x1.62e42fefa39efp-13
11: LN2L← 0x1.abc9e3b39803fp-68
12: kh, kℓ ← ExactMul(k,LN2H)
13: kℓ ← ◦(k · LN2L + kℓ)
14: zh, zℓ ← FastSum(◦(rh − kh), rℓ,−kℓ)
15: write k = e · 212 + i2 · 26 + i1 with 0 ≤ i2, i1 < 26

16: let h2 + ℓ2 approximate 2i2/64

17: let h1 + ℓ1 approximate 2i1/2
12

18: ph, s← ExactMul(h1, h2)
19: t← ◦(ℓ1h2 + s)
20: pℓ ← ◦(h1ℓ2 + t)
21: qh, qℓ ← q 1(zh, zℓ)
22: h, s← ExactMul(ph, qh)
23: t← ◦(pℓqh + s)
24: ℓ← ◦(phqℓ + t)
25: eh, eℓ ← ◦(2e · h), ◦(2e · ℓ)

Lemma 7: In the case ρ1 ≤ rh ≤ ρ2, if |rℓ/rh| < 2−23.8899

and |rℓ| < 2−14.4187, then the value eh + eℓ returned by
Algorithm exp 1 satisfies∣∣∣∣ eh + eℓ

exp(rh + rℓ)
− 1

∣∣∣∣ < 2−74.16.

Moreover, |eℓ/eh| ≤ 2−41.7.
Proof: Appendix A-J of [9] shows that for ρ1 ≤ rh ≤ ρ2,
both eh, 2e · h and 2e · (h+ ℓ) lie in [2−991,Ω].

Appendix A-I of [9] analyzes Algorithm exp 1 and proves
the bound |eℓ/eh| ≤ 2−41.7, while Appendix A-K of [9]
establishes the relative error bound 2−74.16 for eh + eℓ.

D. Main algorithm

The main algorithm for the first phase is Algorithm 9
(phase 1), which calls in turn Algorithms log 1, mul 1, and
exp 1 seen above. The notation RU(2−63.797) means the
rounding upwards of the error bound 2−63.797; this value is
precomputed or obtained at compile-time, and any value in F
larger than 2−63.797 works. For the rounding test, we cannot
use the algorithms from [5] which assume rounding to nearest-
even, whereas our goal is to design algorithms working for all
rounding modes. Instead, we compute a left bound u and a
right bound v with the current rounding mode, and if both u
and v round to the same value, xy rounds to that value.

Algorithm 9 Algorithm phase 1
Input: two binary64 numbers x, y with x > 0
Output: the correct rounding of xy , or FAIL

1: ℓh, ℓℓ ← log 1(x)
2: rh, rℓ ← mul 1(ℓh, ℓℓ, y)
3: eh, eℓ ← exp 1(rh, rℓ)
4: if

√
2/2 < x <

√
2 then ε← RU(2−57.579)

5: else ε← RU(2−63.797)

6: u← ◦(eh + ◦(eℓ − εeh))
7: v ← ◦(eh + ◦(eℓ + εeh))
8: if u = v then return u
9: else return FAIL

Theorem 1: The value returned by Algorithm phase 1 (if
not FAIL) is correctly rounded.
Proof: If rh < ρ1, see [9, Appendix A-L]. If ρ2 < rh, see [9,
Appendix A-M]. If ρ1 ≤ rh ≤ ρ2, see [9, Appendix A-N].

For the first phase, the following four tables are used, which
occupy a total of 6416 bytes:

• a table INVERSE used in Algorithm log 1, with r =
INVERSEi a 9-bit approximation of 1/t for i · 2−8 ≤
t < (i + 1) · 2−8, 181 ≤ i ≤ 362, such that rt − 1
is exactly representable in binary64. When the interval
[i·2−8, (i+1)·2−8] contains 1, that is, for i ∈ {255, 256},
we use r = 1 to avoid cancellation in the computation
of log z− log r. This table has 182 binary64 entries, thus
occupies 1456 bytes;

• a table LOGINV used in Algorithm log 1 such that
for 181 ≤ i ≤ 362, LOGINVi is a double-double
approximation to nearest of − log r, where r is defined
above. This table has 182 entries with two binary64
values, thus occupies 2912 bytes;

• a table T2 such that for 0 ≤ i < 64, T2[i] is a
double-double approximation of 2i/2

6

, used in line 16
of Algorithm exp 1. It has 64 entries with two binary64
values, thus occupies 1024 bytes;

• a table T1 such that for 0 ≤ i < 64, T1[i] is a
double-double approximation of 2i/2

12

, used in line 17
of Algorithm exp 1. It has 64 entries with two binary64
values, thus occupies 1024 bytes.

IV. SECOND AND THIRD PHASES

The second phase uses 128-bit arithmetic (using two 64-
bit integer words for the significands), and delivers an ap-
proximation with about 113 correct bits. It is very similar to
the first phase, except for the computation of log x, where
we use a two-step (instead of single-step) argument reduction
z = r1r2t − 1 so that |z| ≤ 2−13; then we use a degree-9
polynomial for log(1+z), another two-step argument reduction
and a degree-7 polynomial for the computation of exp(r).
When the rounding test of the second phase fails, exact and
midpoint cases are detected using the algorithm from [14],
where it is shown that all exact and midpoint cases belong to
the following set:

S = {(x, y) ∈ F2 | y ∈ N, 2 ≤ y ≤ 35}
∪ {(m, 2Fn) ∈ F2 | F ∈ Z,−5 ≤ F < 0,

n ∈ 2N+ 1, 3 ≤ n ≤ 35,m ∈ 2N+ 1}.

We have computed hard-to-round cases for all pairs (x, y)
from S. Our relative error bound for the second phase is
slightly worse than the bound 2−117 from [14, Algorithm 1],
but no remaining worst case at that point defeats that algo-
rithm. (Note that for the new IEEE mode ’to nearest with
ties to away’, our algorithms should be easy to adapt, since
the only difference with ’to nearest-even’ is how to round
midpoint cases, thus it suffices to adapt the routine handling
them.)

The third phase uses 256-bit arithmetic (using four 64-bit
integer words for the significands), and delivers an approxima-
tion with about 240 correct bits. For the computation of log x,
we use the same two-step argument reduction as in the second
phase, with a degree-18 polynomial for log(1+z), and another
two-step argument reduction with a degree-14 polynomial
for the computation of exp(r). Figure 3 summarizes the
parameters of the three phases. In particular, the error bound of
2−63.797 of the first phase when x /∈ (1/

√
2,
√
2) corresponds

to a probability of about 1/1000 of calling the second phase,
thus to an average overhead of less than one cycle with respect
to the first phase and corresponding rounding test.

Lauter estimates to 2112 the number of pairs (x, y) such
that xy lies in the binary64 range [13]. Thus a full search
for hardest-to-round cases is not possible, even with clever
algorithms like SLZ [20]. As a consequence, it is possible,
albeit extremely unlikely, that the rounding test of the third
phase fails. In such a case, an error message is printed,
with the corresponding inputs x and y, which will enrich
the knowledge of hard-to-round cases. This guarantees that
whenever the function does not print this error message, the
returned value is correctly rounded. If worst-case information
was available, one could avoid the rounding test of the third
phase, by adding some exceptional cases if needed. This would
ensure the function never yields an error message and always
returns a correctly-rounded result, but this would have little
impact on its efficiency.

phase error bound throughput
1 2−63.797/2−57.579 63
2 2−113.17 543
3 2−240.44 1857

Fig. 3. Relative error bound and reciprocal throughput (in i7-8700 cycles) of
the different phases. For the first phase, the error bound differs depending
on whether x ∈ (1/

√
2,

√
2) or not. The second phase includes the

exact/midpoint detection.

V. CORRECTNESS

We have tested the correctness of our implementation,
which is publicly available at https://gitlab.inria.fr/zimmerma/
core-math-power-b64, for all rounding modes, on a set of
917231 input pairs (x, y). This set includes: (a) worst cases for
exponents y that might yield exact or midpoint cases, including
cases where xy lies in the subnormal range; (b) special values
specified by IEEE 754-2019, for example (x, y) = (1,−0) or
(±∞,−0); (c) pairs with x < 0 and y an integer; (d) pairs
with x near 1 and xy near underflow/overflow; (e) exact and
midpoint cases; (f) inputs exhibiting bugs in other libraries; (g)
non-regression tests; (h) additional worst cases found in the
literature, in particular from Section 14.14 in [1], and worst
cases computed by Vincent Lefèvre for xn and x1/n, n integer.
We also tested our implementation on a set of 108 random
inputs pairs, again for all rounding modes. For all these tests,
we used as reference the value given by GNU MPFR [7],
with exponent range matching that of binary64, and emulating
subnormals using mpfr_subnormalize.

VI. EFFICIENCY

In this section, we measure the efficiency of our imple-
mentation in the C language of the algorithms described in
this paper. We measure both the reciprocal throughput and
the latency, using the CORE-MATH perf.sh tool [19]. For
the power function, CORE-MATH generates random x and y
uniformly in [0, 20], so that xy lies in [0, 1026] approximately.
We compare our implementation to the GNU libc (which is
not correctly rounded), to MathLib, CRLIBM, and CRLIBM,
for rounding to nearest-even.

For MathLib, we used the non-official copy from https:
//github.com/dreal-deps/mathlib, which we compiled with the
default compile flags (using -O3 -march=native yields
plenty of incorrect roundings). Our tests confirm that the
MathLib upow routine does not provide correct rounding for
directed rounding modes.

For LIBMCR, we used the non-official copy from https:
//github.com/simonbyrne/libmcr/, which matches our copy
of release 0.9 from 2004. For rounding to nearest-even,
on our set of about one million tests, the pow function
from LIBMCR does not terminate for 15 inputs pairs,
for example x = 0x1.470574d68e0afp+1 and y =
0x1.02e0706205c0ep+1, and we get about 96% of
failures on the remaining tests, for example for x =
0x1.f80b060553772p-1 and y = 0x1.99cp+13,
LIBMCR yields 0x1.00001p+0.

GNU libc MathLib LIBMCR CRLIBM this
2.36 work
43 123 256 211 66
79 166 285 275 111

Fig. 4. Comparison of the reciprocal throughput (top) and latency (bottom)
of some implementations of the binary64 power function, in terms of cpu
cycles, on an Intel(R) Core(TM) i7-8700 with gcc 12.2.0, for rounding to
nearest-even.

The power function from CRLIBM is explicitly said
as experimental, and only works for rounding to nearest-
even. We also noticed some issues, for example for x =
0x1.524ebae943097p+1 and y = 0x1.ep-2, it returns
−5 instead of 0x1.93bd0cd47eb5fp+0. Looking at the
code, it appears that the strange return value of −5 corresponds
to a failure in the last rounding test, which is not treated (here,
xy has 68 identical bits after the round bit).

Figure 4 shows that our implementation is only about 50%
slower than the GNU libc, which is not correctly rounded
(about 40% for the latency). (On a i7-1260P, we get a
reciprocal throughput of 35 cycles and a latency of 78 cycles,
against 23 and 59 respectively for the GNU libc.) While
Figure 4 only considers rounding to nearest-even, timings of
our implementation are very similar for other rounding modes.
For the reciprocal throughput, our implementation outperforms
that of MathLib by 86%, that of CRLIBM by a factor larger
than 3, and that of LIBMCR by a factor of almost 4.

VII. CONCLUSION

We have proposed algorithms for computing the power
function xy with correct rounding, for the binary64 floating-
point format and the four main rounding modes (to nearest-
even as well as the three directed roundings of IEEE 754),
and up to the knowledge of hardest-to-round cases. Our
approach makes heavy use of the FMA instruction (either in
hardware or emulated in software), and leads to a very efficient
implementation, which is 2x to 4x faster than the power
functions from MathLib, CRLIBM, and LIBMCR, claiming
correct rounding.

When designing these algorithms, our aim has been to
ensure both correctness and high efficiency. Efficiency follows
from a three-phase approach whose first phase handles most
binary64 inputs (x, y) very fast thanks to carefully designed
FMA-based double-double computations. Correctness is ob-
tained by returning either the correctly-rounded value of xy

(for which detailed error analysis has been done for the first
phase), or switch to the next (more accurate) phase. Our
implementation handles all the special input cases (such as
x ≤ 0, x or y NaN or infinite, etc.) according to the current
IEEE 754 specification [10, §9.2.1].

As can be seen from the material in [9], we have system-
atically based our algorithms and implementations on very
detailed proofs, which allows us to carefully control the
accuracy of each of the routines involved as well as to predict
and handle the (im)possibility of underflow and overflow.

Furthermore, in the unlikely case where we cannot conclude
that the correct value is returned for xy , returning instead an
error message along with the corresponding input (x, y) makes
it possible to usefully augment the list of known hardest-to-
round cases for that function.

Although our current implementation is already very fast,
we do not claim that it cannot be improved further for speed.
We hope that our results will contribute to turn the current
IEEE recommendation of correct rounding for the mathemati-
cal functions listed in [10, Table 9.1] into a requirement. Our
approach also easily extends to other rounding modes (such
as round to nearest with ties to away) and to other formats
(such as double extended and binary128, or decimal formats).
Finally, the high level of detail of our proofs will hopefully
make it easier to develop formal proofs of our algorithms, and
we are planning to investigate this in the near future as well.

ACKNOWLEDGEMENTS

The authors are grateful to the three anonymous referees for
their useful feedback, to Laurence Rideau and Laurent Théry
who found some small issues in the initial proof of Lemma 2
while trying to convert it into a formal proof, and to Vincenzo
Innocente for his feedback at early stages of this research.
The first author is partially funded by CERN, and the search
for worst cases was performed using computer resources from
CERN and Grid 5000.

REFERENCES

[1] BEEBE, N. H. F. The Mathematical-Function Computation Handbook -
Programming Using the MathCW Portable Software Library. Springer,
2017.

[2] CHEVILLARD, S., JOLDES, M. M., AND LAUTER, C. Sollya: an envi-
ronment for the development of numerical codes. In Third International
Congress on Mathematical Software - ICMS 2010 (Kobe, Japan, 2010),
K. Fukuda, J. van der Hoeven, M. Joswig, and N. Takayama, Eds.,
vol. 6327 of Lecture Notes in Computer Science, Springer, pp. 28–31.

[3] CLARK, N. W., AND CODY, W. J. Self-contained exponentiation. In
AFIPS Conference Proceedings (1969), vol. 35, ACM, pp. 701–706.

[4] DARAMY-LOIRAT, C., DEFOUR, D., DE DINECHIN, F., GALLET, M.,
GAST, N., LAUTER, C., AND MULLER, J.-M. CR-LIBM: A li-
brary of correctly rounded elementary functions in double-precision.
Research report, LIP, 2006. https://hal-ens-lyon.archives-ouvertes.fr/
ensl-01529804.

[5] DE DINECHIN, F., LAUTER, C., MULLER, J.-M., AND TORRES, S. On
Ziv’s rounding test. ACM Trans. Math. Softw. 39, 4 (2013), 25:1–25:19.

[6] DEMMEL, J., AND NGUYEN, H. D. Fast reproducible floating-point
summation. In 21st IEEE Symposium on Computer Arithmetic (2013),
pp. 163–172.

[7] FOUSSE, L., HANROT, G., LEFÈVRE, V., PÉLISSIER, P., AND ZIMMER-
MANN, P. MPFR: A multiple-precision binary floating-point library with
correct rounding. ACM Trans. Math. Softw. 33, 2 (2007), article 13.

[8] GRAILLAT, S., AND JÉZÉQUEL, F. Tight interval inclusions with
compensated algorithms. IEEE Transactions on Computers 69, 12
(2020), 1774–1783.

[9] HUBRECHT, T., JEANNEROD, C.-P., AND ZIMMERMANN, P. To-
wards a correctly-rounded and fast power function in binary64 arith-
metic. Extended version of this ARITH 2023 paper, with detailed
proofs in appendix. Original version of July 12, 2023: https://inria.hal.
science/hal-04159652v1. Most recent version: https://inria.hal.science/
hal-04159652.

[10] IEEE. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-
2019). 2019.

[11] INNOCENTE, V., AND ZIMMERMANN, P. Accuracy of mathematical
functions in single, double, extended double and quadruple precision.
https://members.loria.fr/PZimmermann/papers/accuracy.pdf, 2023. Ver-
sion of February 14, 21 pages.

[12] ISO/IEC. C programming language – N3096, working draft of the
standard, 2023. https://en.wikipedia.org/wiki/C2x.

[13] LAUTER, C. Q. Arrondi correct de fonctions mathématiques. Fonctions
univariées et bivariées, certification et automatisation. PhD thesis,
Université de Lyon - École Normale Supérieure de Lyon, 2008.

[14] LAUTER, C. Q., AND LEFÈVRE, V. An efficient rounding boundary test
for pow(x, y) in double precision. IEEE Trans. Comput. 58, 2 (2009),
197–207.

[15] LE MAIRE, J., BRUNIE, N., DE DINECHIN, F., AND MULLER, J.
Computing floating-point logarithms with fixed-point operations. In
23nd IEEE Symposium on Computer Arithmetic, ARITH 2016 (2016),
P. Montuschi, M. J. Schulte, J. Hormigo, S. F. Oberman, and N. Revol,
Eds., IEEE Computer Society, pp. 156–163.

[16] LIM, J. P., AND NAGARAKATTE, S. High performance correctly
rounded math libraries for 32-bit floating point representations. In
PLDI’21: 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, Virtual Event (2021), S. N.
Freund and E. Yahav, Eds., ACM, pp. 359–374.

[17] The LLVM C Library. https://libc.llvm.org/.
[18] MARKSTEIN, P. IA-64 and Elementary Functions: Speed and Precision.

Prentice Hall, 2000. Hewlett-Packard Professional Books.
[19] SIBIDANOV, A., ZIMMERMANN, P., AND GLONDU, S. The CORE-

MATH Project. In ARITH 2022 - 29th IEEE Symposium on Computer
Arithmetic (virtual, France, 2022). https://hal.inria.fr/hal-03721525.

[20] STEHLÉ, D., LEFÈVRE, V., AND ZIMMERMANN, P. Searching worst
cases of a one-variable function using lattice reduction. IEEE Transac-
tions on Computers 54, 3 (2005), 340–346.

[21] TANG, P. T. P. Table-driven implementation of the logarithm function in
IEEE floating-point arithmetic. ACM Trans. Math. Softw. 16, 4 (1990),
378–400.

[22] ZIMMERMANN, P. Note on FastTwoSum with Directed Roundings.
Working paper or preprint, available at https://hal.inria.fr/hal-03798376,
2023.

[23] ZIV, A. Fast evaluation of elementary mathematical functions with
correctly rounded last bit. ACM Trans. Math. Softw. 17, 3 (1991), 410–
423.

